Domain-Class Correlation Decomposition for Generalizable Person
Re-Identification
- URL: http://arxiv.org/abs/2106.15206v1
- Date: Tue, 29 Jun 2021 09:45:03 GMT
- Title: Domain-Class Correlation Decomposition for Generalizable Person
Re-Identification
- Authors: Kaiwen Yang and Xinmei Tian
- Abstract summary: In person re-identification, the domain and class are correlated.
We show that domain adversarial learning will lose certain information about class due to this domain-class correlation.
Our model outperforms the state-of-the-art methods on the large-scale domain generalization Re-ID benchmark.
- Score: 34.813965300584776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization in person re-identification is a highly important
meaningful and practical task in which a model trained with data from several
source domains is expected to generalize well to unseen target domains. Domain
adversarial learning is a promising domain generalization method that aims to
remove domain information in the latent representation through adversarial
training. However, in person re-identification, the domain and class are
correlated, and we theoretically show that domain adversarial learning will
lose certain information about class due to this domain-class correlation.
Inspired by casual inference, we propose to perform interventions to the domain
factor $d$, aiming to decompose the domain-class correlation. To achieve this
goal, we proposed estimating the resulting representation $z^{*}$ caused by the
intervention through first- and second-order statistical characteristic
matching. Specifically, we build a memory bank to restore the statistical
characteristics of each domain. Then, we use the newly generated samples
$\{z^{*},y,d^{*}\}$ to compute the loss function. These samples are
domain-class correlation decomposed; thus, we can learn a domain-invariant
representation that can capture more class-related features. Extensive
experiments show that our model outperforms the state-of-the-art methods on the
large-scale domain generalization Re-ID benchmark.
Related papers
- DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - Domain Generalization via Causal Adjustment for Cross-Domain Sentiment
Analysis [59.73582306457387]
We focus on the problem of domain generalization for cross-domain sentiment analysis.
We propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations.
A series of experiments show the great performance and robustness of our model.
arXiv Detail & Related papers (2024-02-22T13:26:56Z) - Domain-aware Triplet loss in Domain Generalization [0.0]
Domain shift is caused by discrepancies in the distributions of the testing and training data.
We design a domainaware triplet loss for domain generalization to help the model to cluster similar semantic features.
Our algorithm is designed to disperse domain information in the embedding space.
arXiv Detail & Related papers (2023-03-01T14:02:01Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains.
We propose a novel representation learning methodology that selectively enforces prediction consistency between source domains.
arXiv Detail & Related papers (2022-06-16T01:57:35Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
In many settings, privacy concerns prohibit obtaining domain labels for the training data samples.
We propose a domain-adaptive approach to this problem, which operates in two steps.
Our approach achieves state-of-the-art performance on a variety of domain generalization benchmarks without using domain labels.
arXiv Detail & Related papers (2021-12-09T08:57:01Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
We propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
arXiv Detail & Related papers (2021-05-07T02:54:55Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains.
We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks.
arXiv Detail & Related papers (2020-11-25T12:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.