Domain-aware Triplet loss in Domain Generalization
- URL: http://arxiv.org/abs/2303.01233v1
- Date: Wed, 1 Mar 2023 14:02:01 GMT
- Title: Domain-aware Triplet loss in Domain Generalization
- Authors: Kaiyu Guo, Brian Lovell
- Abstract summary: Domain shift is caused by discrepancies in the distributions of the testing and training data.
We design a domainaware triplet loss for domain generalization to help the model to cluster similar semantic features.
Our algorithm is designed to disperse domain information in the embedding space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite much progress being made in the field of object recognition with the
advances of deep learning, there are still several factors negatively affecting
the performance of deep learning models. Domain shift is one of these factors
and is caused by discrepancies in the distributions of the testing and training
data. In this paper, we focus on the problem of compact feature clustering in
domain generalization to help optimize the embedding space from multi-domain
data. We design a domainaware triplet loss for domain generalization to help
the model to not only cluster similar semantic features, but also to disperse
features arising from the domain. Unlike previous methods focusing on
distribution alignment, our algorithm is designed to disperse domain
information in the embedding space. The basic idea is motivated based on the
assumption that embedding features can be clustered based on domain
information, which is mathematically and empirically supported in this paper.
In addition, during our exploration of feature clustering in domain
generalization, we note that factors affecting the convergence of metric
learning loss in domain generalization are more important than the pre-defined
domains. To solve this issue, we utilize two methods to normalize the embedding
space, reducing the internal covariate shift of the embedding features. The
ablation study demonstrates the effectiveness of our algorithm. Moreover, the
experiments on the benchmark datasets, including PACS, VLCS and Office-Home,
show that our method outperforms related methods focusing on domain
discrepancy. In particular, our results on RegnetY-16 are significantly better
than state-of-the-art methods on the benchmark datasets. Our code will be
released at https://github.com/workerbcd/DCT
Related papers
- Unsupervised Domain Adaptation Using Compact Internal Representations [23.871860648919593]
A technique for tackling unsupervised domain adaptation involves mapping data points from both the source and target domains into a shared embedding space.
We develop an additional technique which makes the internal distribution of the source domain more compact.
We demonstrate that by increasing the margins between data representations for different classes in the embedding space, we can improve the model performance for UDA.
arXiv Detail & Related papers (2024-01-14T05:53:33Z) - DAOT: Domain-Agnostically Aligned Optimal Transport for Domain-Adaptive
Crowd Counting [35.83485358725357]
Domain adaptation is commonly employed in crowd counting to bridge the domain gaps between different datasets.
Existing domain adaptation methods tend to focus on inter-dataset differences while overlooking the intra-differences within the same dataset.
We propose a Domain-agnostically Aligned Optimal Transport (DAOT) strategy that aligns domain-agnostic factors between domains.
arXiv Detail & Related papers (2023-08-10T02:59:40Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains.
We propose a novel representation learning methodology that selectively enforces prediction consistency between source domains.
arXiv Detail & Related papers (2022-06-16T01:57:35Z) - Domain-Class Correlation Decomposition for Generalizable Person
Re-Identification [34.813965300584776]
In person re-identification, the domain and class are correlated.
We show that domain adversarial learning will lose certain information about class due to this domain-class correlation.
Our model outperforms the state-of-the-art methods on the large-scale domain generalization Re-ID benchmark.
arXiv Detail & Related papers (2021-06-29T09:45:03Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
arXiv Detail & Related papers (2020-03-18T04:43:25Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
Open set domain adaptation (OSDA) assumes the presence of unknown classes in the target domain.
We show that existing state-of-the-art methods suffer a considerable performance drop in the presence of larger domain gaps.
We propose a novel framework to specifically address the larger domain gaps.
arXiv Detail & Related papers (2020-03-08T14:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.