Porter-Thomas fluctuations in complex quantum systems
- URL: http://arxiv.org/abs/2106.15251v3
- Date: Mon, 13 Sep 2021 02:55:39 GMT
- Title: Porter-Thomas fluctuations in complex quantum systems
- Authors: K. Hagino and G.F. Bertsch
- Abstract summary: We find that the coupling to the decay channels can change the effective number of degrees of freedom from $nu = 1$ to $nu = 2$.
Our conclusions are based on a configuration-interaction Hamiltonian originally constructed to test the validity of transition-state theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gaussian Orthogonal Ensemble (GOE) of random matrices has been widely
employed to describe diverse phenomena in strongly coupled quantum systems. An
important prediction is that the decay rates of the GOE eigenstates fluctuate
according to the distribution for one degree of freedom, as derived by Brink
and by Porter and Thomas. However, we find that the coupling to the decay
channels can change the effective number of degrees of freedom from $\nu = 1$
to $\nu = 2$. Our conclusions are based on a configuration-interaction
Hamiltonian originally constructed to test the validity of transition-state
theory, also known as Rice-Ramsperger-Kassel-Marcus (RRKM) theory in chemistry.
The internal Hamiltonian consists of two sets of GOE reservoirs connected by an
internal channel. We find that the effective number of degrees of freedom $\nu$
can vary from one to two depending on the control parameter $\rho \Gamma$,
where $\rho$ is the level density in the first reservoir and $\Gamma$ is the
level decay width. The $\nu = 2$ distribution is a well-known property of the
Gaussian Unitary ensemble (GUE); our model demonstrates that the GUE
fluctuations can be present under much milder conditions. Our treatment of the
model permits an analytic derivation for $\rho\Gamma \gtrsim 1$.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Mixed-state quantum anomaly and multipartite entanglement [8.070164241593814]
We show a surprising connection between mixed state entanglement and 't Hooft anomaly.
We generate examples of mixed states with nontrivial long-ranged multipartite entanglement.
We also briefly discuss mixed anomaly involving both strong and weak symmetries.
arXiv Detail & Related papers (2024-01-30T19:00:02Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Weak universality, quantum many-body scars and anomalous
infinite-temperature autocorrelations in a one-dimensional spin model with
duality [0.0]
We study a one-dimensional spin-$1/2$ model with three-spin interactions and a transverse magnetic field $h$.
We compute the critical exponents $z$, $beta$, $gamma$ and $nu$, and the central charge $c$.
For a system with periodic boundary conditions, there are an exponentially large number of exact mid-spectrum zero-energy eigenstates.
arXiv Detail & Related papers (2023-07-20T18:00:05Z) - Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature [0.0]
We find interesting effects at $theta=pi$: along the $SU(2)$-invariant line $m_lat = m- g2 a/4$.
In this regime there is a non-perturbatively small mass gap $sim e- A g2/m2$.
arXiv Detail & Related papers (2023-05-08T03:17:48Z) - Laboratory-frame tests of quantum entanglement in $H \to WW$ [0.0]
Quantum entanglement between the two $W$ bosons resulting from the decay of a Higgs boson may be investigated in the dilepton channel $H to WW to ell nu ell nu$
The dilepton invariant mass distribution, already measured by the ATLAS and CMS Collaborations at the LHC, can be used to observe the quantum entanglement of the $WW$ pair.
arXiv Detail & Related papers (2022-09-28T12:22:12Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - DMRG study of strongly interacting $\mathbb{Z}_2$ flatbands: a toy model
inspired by twisted bilayer graphene [0.0]
We study strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers.
We determine the ground states for two scenarios at half-filling.
Turning on interactions drives the system to spontaneously break time-reversal symmetry.
arXiv Detail & Related papers (2020-04-22T01:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.