論文の概要: Tackling Catastrophic Forgetting and Background Shift in Continual
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2106.15287v1
- Date: Tue, 29 Jun 2021 11:57:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 00:58:45.398877
- Title: Tackling Catastrophic Forgetting and Background Shift in Continual
Semantic Segmentation
- Title(参考訳): 連続セマンティックセグメンテーションにおける破滅的予測と背景変化
- Authors: Arthur Douillard, Yifu Chen, Arnaud Dapogny, Matthieu Cord
- Abstract要約: セマンティックセグメンテーション(CSS)の継続的な学習は、新しいクラスを逐次追加することによって古いモデルを更新する、新たなトレンドである。
本稿では,長期・短距離空間関係を保存する多スケールプール蒸留方式であるLocal PODを提案する。
また,セグメンテーションに適した新しいリハーサル手法も導入する。
- 参考スコア(独自算出の注目度): 35.2461834832935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning approaches are nowadays ubiquitously used to tackle computer
vision tasks such as semantic segmentation, requiring large datasets and
substantial computational power. Continual learning for semantic segmentation
(CSS) is an emerging trend that consists in updating an old model by
sequentially adding new classes. However, continual learning methods are
usually prone to catastrophic forgetting. This issue is further aggravated in
CSS where, at each step, old classes from previous iterations are collapsed
into the background. In this paper, we propose Local POD, a multi-scale pooling
distillation scheme that preserves long- and short-range spatial relationships
at feature level. Furthermore, we design an entropy-based pseudo-labelling of
the background w.r.t. classes predicted by the old model to deal with
background shift and avoid catastrophic forgetting of the old classes. Finally,
we introduce a novel rehearsal method that is particularly suited for
segmentation. Our approach, called PLOP, significantly outperforms
state-of-the-art methods in existing CSS scenarios, as well as in newly
proposed challenging benchmarks.
- Abstract(参考訳): ディープラーニングアプローチは、現在、セマンティックセグメンテーションや大規模なデータセット、相当な計算能力といったコンピュータビジョンタスクに取り組むために、ユビキタスに使われている。
セマンティックセグメンテーション(CSS)の継続的な学習は、新しいクラスを逐次追加することによって古いモデルを更新する、新たなトレンドである。
しかし、連続学習法は通常、破滅的な忘れがちである。
この問題はcssでさらに悪化し、各ステップにおいて、以前のイテレーションからの古いクラスがバックグラウンドで崩壊する。
本稿では,長大かつ短大な空間関係を特徴レベルで保存する多スケールプール蒸留方式であるLocal PODを提案する。
さらに,背景w.r.tのエントロピーに基づく擬似ラベリングを設計する。
古いモデルによって予測されるクラスは、バックグラウンドシフトに対処し、古いクラスの破滅的な忘れを避ける。
最後に,セグメンテーションに適した新しいリハーサル手法を提案する。
plopと呼ばれるこのアプローチは、既存のcssシナリオや新しく提案された挑戦的ベンチマークにおいて、最先端のメソッドを大幅に上回っている。
関連論文リスト
- BACS: Background Aware Continual Semantic Segmentation [15.821935479975343]
自律運転では、デプロイされたエージェントの運用環境がより複雑になるにつれて、新しいクラスを統合する必要がある。
アノテーションの効率を高めるために、理想的には、新しいクラスに属するピクセルだけが注釈付けされる。
本稿では,以前に観測されたクラスを検出するための後方背景シフト検出器(BACS)を提案する。
論文 参考訳(メタデータ) (2024-04-19T19:25:26Z) - Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation [56.1776710527814]
Weakly Incremental Learning for Semantic (WILSS)は、トレーニング済みのセグメンテーションモデルを利用して、コスト効率と手軽に利用できるイメージレベルのラベルを使用して、新しいクラスをセグメンテーションする。
WILSSを解く最も一般的な方法は、各新しいクラスのシード領域の生成であり、ピクセルレベルの監視の一形態として機能する。
本研究は, 種子領域の挙動を綿密に調整した, 相互排他性に関する革新的, 傾向的関係について提案する。
論文 参考訳(メタデータ) (2024-04-18T08:23:24Z) - ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning [54.68180752416519]
パノプティカルセグメンテーション(英: Panoptic segmentation)は、コンピュータビジョンの最先端タスクである。
ECLIPSE と呼ばれる Visual Prompt Tuning をベースとした,新規で効率的なパノプティカルセグメンテーション手法を提案する。
我々のアプローチは、基本モデルのパラメータを凍結し、小さなプロンプト埋め込みだけを微調整することであり、破滅的な忘れ物と塑性の両方に対処する。
論文 参考訳(メタデータ) (2024-03-29T11:31:12Z) - Harmonizing Base and Novel Classes: A Class-Contrastive Approach for
Generalized Few-Shot Segmentation [78.74340676536441]
本稿では,プロトタイプの更新を規制し,プロトタイプ間の距離を広くするために,クラス間のコントラスト損失とクラス関係損失を提案する。
提案手法は,PASCAL VOC および MS COCO データセット上での一般化された小ショットセグメンテーションタスクに対して,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-24T00:30:25Z) - Mining Unseen Classes via Regional Objectness: A Simple Baseline for
Incremental Segmentation [57.80416375466496]
画像分類タスクにおいて、破滅的な忘れを緩和するために、増分的あるいは連続的な学習が広く研究されている。
本稿では,マイニングのための地域目的性(MicroSeg)を通した未確認クラスという,シンプルで効果的な手法を提案する。
われわれのMicroSegは、強い客観性を持つ背景領域が、歴史的または将来の段階においてそれらの概念に属するという仮定に基づいている。
このように、特徴空間における古い概念を特徴付ける分布は、背景シフトによる破滅的な忘れを軽減し、よりよく認識される。
論文 参考訳(メタデータ) (2022-11-13T10:06:17Z) - Modeling the Background for Incremental and Weakly-Supervised Semantic
Segmentation [39.025848280224785]
セマンティックセグメンテーションのための新しい漸進的なクラス学習手法を提案する。
各トレーニングステップは、すべての可能なクラスのサブセットにのみアノテーションを提供するので、バックグラウンドクラスのピクセルはセマンティックシフトを示す。
本研究では,Pascal-VOC,ADE20K,Cityscapesのデータセットを広範囲に評価し,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-01-31T16:33:21Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
本稿では,セマンティックセグメンテーションにおけるクラス連続学習に着目した。
新しいカテゴリは時間とともに利用可能になり、以前のトレーニングデータは保持されない。
提案された連続学習スキームは、潜在空間を形作り、新しいクラスの認識を改善しながら忘れを減らす。
論文 参考訳(メタデータ) (2021-03-10T21:02:05Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
微調整されたセマンティックセグメンテーションは、近年深く研究されている困難な問題です。
本稿では、オブジェクトが現れる固有のコンテキストを変更する Context Decoupling Augmentation (CDA) メソッドを紹介します。
提案手法の有効性を検証するため, PASCAL VOC 2012データセットにいくつかの代替ネットワークアーキテクチャを用いた広範な実験を行い, CDAが様々なWSSS手法を新たな最先端技術に拡張できることを実証した。
論文 参考訳(メタデータ) (2021-03-02T15:05:09Z) - PLOP: Learning without Forgetting for Continual Semantic Segmentation [44.49799311137856]
セマンティックセグメンテーション(CSS)の継続的な学習は、新しいクラスを逐次追加することによって古いモデルを更新する、新たなトレンドである。
本稿では,長大かつ短大な空間関係を特徴レベルで保存する多スケールプール蒸留方式であるLocal PODを提案する。
また,従来のモデルが予測した背景w.r.t.クラスのエントロピーに基づく擬似ラベリングを設計し,背景シフトに対処し,旧クラスの破滅的忘れを避ける。
論文 参考訳(メタデータ) (2020-11-23T13:35:03Z) - Modeling the Background for Incremental Learning in Semantic
Segmentation [39.025848280224785]
深いアーキテクチャは破滅的な忘れ方に弱い。
本稿では,意味的セグメンテーションの文脈においてこの問題に対処する。
本稿では,このシフトを明示的に考慮した蒸留法に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-03T13:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。