On exploring practical potentials of quantum auto-encoder with
advantages
- URL: http://arxiv.org/abs/2106.15432v1
- Date: Tue, 29 Jun 2021 14:01:40 GMT
- Title: On exploring practical potentials of quantum auto-encoder with
advantages
- Authors: Yuxuan Du, Dacheng Tao
- Abstract summary: Quantum auto-encoder (QAE) is a powerful tool to relieve the curse of dimensionality encountered in quantum physics.
We prove that QAE can be used to efficiently calculate the eigenvalues and prepare the corresponding eigenvectors of a high-dimensional quantum state.
We devise three effective QAE-based learning protocols to solve the low-rank state fidelity estimation, the quantum Gibbs state preparation, and the quantum metrology tasks.
- Score: 92.19792304214303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum auto-encoder (QAE) is a powerful tool to relieve the curse of
dimensionality encountered in quantum physics, celebrated by the ability to
extract low-dimensional patterns from quantum states living in the
high-dimensional space. Despite its attractive properties, little is known
about the practical applications of QAE with provable advantages. To address
these issues, here we prove that QAE can be used to efficiently calculate the
eigenvalues and prepare the corresponding eigenvectors of a high-dimensional
quantum state with the low-rank property. With this regard, we devise three
effective QAE-based learning protocols to solve the low-rank state fidelity
estimation, the quantum Gibbs state preparation, and the quantum metrology
tasks, respectively. Notably, all of these protocols are scalable and can be
readily executed on near-term quantum machines. Moreover, we prove that the
error bounds of the proposed QAE-based methods outperform those in previous
literature. Numerical simulations collaborate with our theoretical analysis.
Our work opens a new avenue of utilizing QAE to tackle various quantum physics
and quantum information processing problems in a scalable way.
Related papers
- Hamiltonian Dynamics Learning: A Scalable Approach to Quantum Process Characterization [6.741097425426473]
We introduce an efficient quantum process learning method specifically designed for short-time Hamiltonian dynamics.
We demonstrate applications in quantum machine learning, where our protocol enables efficient training of variational quantum neural networks by directly learning unitary transformations.
This work establishes a new theoretical foundation for practical quantum dynamics learning, paving the way for scalable quantum process characterization in both near-term and fault-tolerant quantum computing.
arXiv Detail & Related papers (2025-03-31T14:50:00Z) - QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design [17.747641494506087]
We introduce QCircuitNet, the first benchmark and test dataset designed to evaluate AI's capability in designing and implementing quantum algorithms.
Unlike using AI for writing traditional codes, this task is fundamentally different and significantly more complicated due to highly flexible design space and intricate manipulation of qubits.
arXiv Detail & Related papers (2024-10-10T14:24:30Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
This paper revisits the quantum visual encoding strategies, the initial step in quantum machine learning.
Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process.
We introduce a new loss function named Quantum Information Preserving to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-05-30T06:15:08Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies.
In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
arXiv Detail & Related papers (2020-04-25T07:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.