QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design
- URL: http://arxiv.org/abs/2410.07961v1
- Date: Thu, 10 Oct 2024 14:24:30 GMT
- Title: QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design
- Authors: Rui Yang, Yuntian Gu, Ziruo Wang, Yitao Liang, Tongyang Li,
- Abstract summary: We introduce QCircuitNet, the first benchmark and test dataset designed to evaluate AI's capability in designing and implementing quantum algorithms.
Unlike using AI for writing traditional codes, this task is fundamentally different and significantly more complicated due to highly flexible design space and intricate manipulation of qubits.
- Score: 17.747641494506087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is an emerging field recognized for the significant speedup it offers over classical computing through quantum algorithms. However, designing and implementing quantum algorithms pose challenges due to the complex nature of quantum mechanics and the necessity for precise control over quantum states. Despite the significant advancements in AI, there has been a lack of datasets specifically tailored for this purpose. In this work, we introduce QCircuitNet, the first benchmark and test dataset designed to evaluate AI's capability in designing and implementing quantum algorithms in the form of quantum circuit codes. Unlike using AI for writing traditional codes, this task is fundamentally different and significantly more complicated due to highly flexible design space and intricate manipulation of qubits. Our key contributions include: 1. A general framework which formulates the key features of quantum algorithm design task for Large Language Models. 2. Implementation for a wide range of quantum algorithms from basic primitives to advanced applications, with easy extension to more quantum algorithms. 3. Automatic validation and verification functions, allowing for iterative evaluation and interactive reasoning without human inspection. 4. Promising potential as a training dataset through primitive fine-tuning results. We observed several interesting experimental phenomena: fine-tuning does not always outperform few-shot learning, and LLMs tend to exhibit consistent error patterns. QCircuitNet provides a comprehensive benchmark for AI-driven quantum algorithm design, offering advantages in model evaluation and improvement, while also revealing some limitations of LLMs in this domain.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Q-gen: A Parameterized Quantum Circuit Generator [0.6062751776009752]
We introduce Q-gen, a high-level, parameterized quantum circuit generator incorporating 15 realistic quantum algorithms.
Q-gen is an open-source project that serves as the entrance for users with a classical computer science background to dive into the world of quantum computing.
arXiv Detail & Related papers (2024-07-26T12:22:40Z) - Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
One of the first considerations is the design of the quantum machine learning model itself.
Recent research has started questioning whether quantum advantage via speedup is the right goal for quantum machine learning.
In this paper, we take an alternative approach by incorporating the design of classical deep learning algorithms to the design of quantum neural networks.
arXiv Detail & Related papers (2024-07-19T06:31:22Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.