論文の概要: GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning
- arxiv url: http://arxiv.org/abs/2106.15516v3
- Date: Wed, 28 Jun 2023 13:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 18:59:03.354790
- Title: GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning
- Title(参考訳): GeoT: 信頼性分子特性予測と化学的解釈可能な表現学習のための幾何学的変換器
- Authors: Bumju Kwak, Jiwon Park, Taewon Kang, Jeonghee Jo, Byunghan Lee,
Sungroh Yoon
- Abstract要約: GeoT(Geometry-aware Transformer)という,分子表現学習のためのトランスフォーマーベースの新しいフレームワークを提案する。
GeoTは、分子特性予測と同様に、信頼性の高い解釈性を提供するように設計された注意に基づくメカニズムを通じて、分子グラフ構造を学習する。
実験的なシミュレーションを含む包括的実験により、GeoTは分子構造に関する化学的な洞察を効果的に学習し、人工知能と分子科学のギャップを埋めることを明らかにした。
- 参考スコア(独自算出の注目度): 16.484048833163282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, molecular representation learning has emerged as a key area
of focus in various chemical tasks. However, many existing models fail to fully
consider the geometric information of molecular structures, resulting in less
intuitive representations. Moreover, the widely used message-passing mechanism
is limited to provide the interpretation of experimental results from a
chemical perspective. To address these challenges, we introduce a novel
Transformer-based framework for molecular representation learning, named the
Geometry-aware Transformer (GeoT). GeoT learns molecular graph structures
through attention-based mechanisms specifically designed to offer reliable
interpretability, as well as molecular property prediction. Consequently, GeoT
can generate attention maps of interatomic relationships associated with
training objectives. In addition, GeoT demonstrates comparable performance to
MPNN-based models while achieving reduced computational complexity. Our
comprehensive experiments, including an empirical simulation, reveal that GeoT
effectively learns the chemical insights into molecular structures, bridging
the gap between artificial intelligence and molecular sciences.
- Abstract(参考訳): 近年、分子表現学習は様々な化学タスクに焦点をあてる重要な領域として浮上している。
しかし、既存のモデルの多くは、分子構造の幾何学的情報を完全に考慮できず、直感的な表現は少ない。
さらに、化学的な観点からの実験結果の解釈を提供するために、広く使われているメッセージパッシング機構が限られている。
これらの課題に対処するために,GeoT(Geometry-aware Transformer)という,分子表現学習のためのトランスフォーマーベースのフレームワークを導入する。
geotは、分子特性の予測だけでなく、信頼できる解釈性を提供するために特別に設計された注意に基づくメカニズムを通じて、分子グラフ構造を学ぶ。
これにより、GeoTはトレーニング対象に関連する原子間関係の注意マップを生成することができる。
さらに、GeoTはMPNNベースのモデルに匹敵する性能を示しながら、計算複雑性の低減を実現している。
実験の結果,geantは分子構造に対する化学的洞察を効果的に学習し,人工知能と分子科学のギャップを橋渡ししていることが明らかとなった。
関連論文リスト
- Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
幾何戦略の有効性をベンチマークできるGeom3Dというプラットフォームを提案する。
Geom3Dは16の高度な対称性インフォームド幾何表現モデルと46の多様なデータセット上の14の幾何事前学習方法を含んでいる。
論文 参考訳(メタデータ) (2023-06-15T05:37:25Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Equivariant Graph Attention Networks for Molecular Property Prediction [0.34376560669160383]
大きさの異なる3D分子構造について学ぶことは、機械学習、特に薬物発見における新たな課題である。
本稿では,カルテシアン座標を用いた等変グラフニューラルネットワーク(GNN)を提案する。
小分子の量子力学的性質の予測におけるアーキテクチャの有効性を実証し,タンパク質複合体などの高分子構造に関する問題に対するその利点を示す。
論文 参考訳(メタデータ) (2022-02-20T19:07:29Z) - Geometric Deep Learning on Molecular Representations [0.0]
Geometric Deep Learning (GDL)は、対称性情報を取り込んで処理するニューラルネットワークアーキテクチャに基づいている。
このレビューは、分子GDLの構造的および調和された概要を提供し、その薬物発見、化学合成予測、量子化学への応用を強調している。
学習された分子の特徴と、確立された分子記述子との相補性に重点を置いている。
論文 参考訳(メタデータ) (2021-07-26T09:23:43Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - Molecular CT: Unifying Geometry and Representation Learning for
Molecules at Different Scales [3.987395340580183]
この目的のために、新しいディープニューラルネットワークアーキテクチャである分子構成変換器(分子CT)が導入された。
計算効率と普遍性は、様々な分子学習シナリオに分子CTを多用する。
例として、分子CTは分子系の異なるスケールでの表現学習を可能にし、共通ベンチマークで同等または改善された結果が得られることを示す。
論文 参考訳(メタデータ) (2020-12-22T03:41:16Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。