A Mixed-Supervision Multilevel GAN Framework for Image Quality
Enhancement
- URL: http://arxiv.org/abs/2106.15575v1
- Date: Tue, 29 Jun 2021 17:10:41 GMT
- Title: A Mixed-Supervision Multilevel GAN Framework for Image Quality
Enhancement
- Authors: Uddeshya Upadhyay, Suyash Awate
- Abstract summary: We propose a novel generative adversarial network (GAN) that can leverage training data at multiple levels of quality.
We apply our mixed-supervision GAN to (i) super-resolve histopathology images and (ii) enhance laparoscopy images by combining super-resolution and surgical smoke removal.
Results on large clinical and pre-clinical datasets show the benefits of our mixed-supervision GAN over the state of the art.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks for image quality enhancement typically need large
quantities of highly-curated training data comprising pairs of low-quality
images and their corresponding high-quality images. While high-quality image
acquisition is typically expensive and time-consuming, medium-quality images
are faster to acquire, at lower equipment costs, and available in larger
quantities. Thus, we propose a novel generative adversarial network (GAN) that
can leverage training data at multiple levels of quality (e.g., high and medium
quality) to improve performance while limiting costs of data curation. We apply
our mixed-supervision GAN to (i) super-resolve histopathology images and (ii)
enhance laparoscopy images by combining super-resolution and surgical smoke
removal. Results on large clinical and pre-clinical datasets show the benefits
of our mixed-supervision GAN over the state of the art.
Related papers
- Hybrid attention structure preserving network for reconstruction of under-sampled OCT images [0.30693357740321775]
We proposed a hybrid attention structure preserving network (HASPN) to achieve super-resolution of under-sampled OCT images to speed up the acquisition.
It utilized adaptive dilated convolution-based channel attention (ADCCA) and enhanced spatial attention (ESA) to better capture the channel and spatial information of the feature.
HASPN was applied to the diabetic macular edema retinal dataset, validating its good generalization ability.
arXiv Detail & Related papers (2024-06-01T03:07:28Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Improving Nonalcoholic Fatty Liver Disease Classification Performance
With Latent Diffusion Models [0.0]
We show that by combining synthetic images, generated using diffusion models, with real images, we can enhance nonalcoholic fatty liver disease classification performance.
Our results show superior performance for the diffusion-generated images, with a maximum IS score of $1.90$ compared to $1.67$ for GANs, and a minimum FID score of $69.45$ compared to $100.05$ for GANs.
arXiv Detail & Related papers (2023-07-13T01:14:08Z) - Self-supervised Domain Adaptation for Breaking the Limits of Low-quality
Fundus Image Quality Enhancement [14.677912534121273]
Low-quality fundus images and style inconsistency potentially increase uncertainty in the diagnosis of fundus disease.
We formulate two self-supervised domain adaptation tasks to disentangle the features of image content, low-quality factor and style information.
Our DASQE method achieves new state-of-the-art performance when only low-quality images are available.
arXiv Detail & Related papers (2023-01-17T15:07:20Z) - UNO-QA: An Unsupervised Anomaly-Aware Framework with Test-Time
Clustering for OCTA Image Quality Assessment [4.901218498977952]
We propose an unsupervised anomaly-aware framework with test-time clustering for optical coherence tomography angiography ( OCTA) image quality assessment.
A feature-embedding-based low-quality representation module is proposed to quantify the quality of OCTA images.
We perform dimension reduction and clustering of multi-scale image features extracted by the trained OCTA quality representation network.
arXiv Detail & Related papers (2022-12-20T18:48:04Z) - Flow-based Visual Quality Enhancer for Super-resolution Magnetic
Resonance Spectroscopic Imaging [13.408365072149795]
We propose a flow-based enhancer network to improve the visual quality of super-resolution MRSI.
Our enhancer network incorporates anatomical information from additional image modalities (MRI) and uses a learnable base distribution.
Our method also allows visual quality adjustment and uncertainty estimation.
arXiv Detail & Related papers (2022-07-20T20:19:44Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z) - Image Augmentations for GAN Training [57.65145659417266]
We provide insights and guidelines on how to augment images for both vanilla GANs and GANs with regularizations.
Surprisingly, we find that vanilla GANs attain generation quality on par with recent state-of-the-art results.
arXiv Detail & Related papers (2020-06-04T00:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.