Learning to Map for Active Semantic Goal Navigation
- URL: http://arxiv.org/abs/2106.15648v1
- Date: Tue, 29 Jun 2021 18:01:30 GMT
- Title: Learning to Map for Active Semantic Goal Navigation
- Authors: Georgios Georgakis, Bernadette Bucher, Karl Schmeckpeper, Siddharth
Singh, Kostas Daniilidis
- Abstract summary: We propose a novel framework that actively learns to generate semantic maps outside the field of view of the agent.
We show how different objectives can be defined by balancing exploration with exploitation.
Our method is validated in the visually realistic environments offered by the Matterport3D dataset.
- Score: 40.193928212509356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of object goal navigation in unseen environments. In
our view, solving this problem requires learning of contextual semantic priors,
a challenging endeavour given the spatial and semantic variability of indoor
environments. Current methods learn to implicitly encode these priors through
goal-oriented navigation policy functions operating on spatial representations
that are limited to the agent's observable areas. In this work, we propose a
novel framework that actively learns to generate semantic maps outside the
field of view of the agent and leverages the uncertainty over the semantic
classes in the unobserved areas to decide on long term goals. We demonstrate
that through this spatial prediction strategy, we are able to learn semantic
priors in scenes that can be leveraged in unknown environments. Additionally,
we show how different objectives can be defined by balancing exploration with
exploitation during searching for semantic targets. Our method is validated in
the visually realistic environments offered by the Matterport3D dataset and
show state of the art results on the object goal navigation task.
Related papers
- Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Predicting Dense and Context-aware Cost Maps for Semantic Robot
Navigation [35.45993685414002]
We investigate the task of object goal navigation in unknown environments where the target is specified by a semantic label.
We propose a deep neural network architecture and loss function to predict dense cost maps that implicitly contain semantic context.
We also present a novel way of fusing mid-level visual representations in our architecture to provide additional semantic cues for cost map prediction.
arXiv Detail & Related papers (2022-10-17T11:43:19Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.