Predicting Dense and Context-aware Cost Maps for Semantic Robot
Navigation
- URL: http://arxiv.org/abs/2210.08952v1
- Date: Mon, 17 Oct 2022 11:43:19 GMT
- Title: Predicting Dense and Context-aware Cost Maps for Semantic Robot
Navigation
- Authors: Yash Goel, Narunas Vaskevicius, Luigi Palmieri, Nived Chebrolu and
Cyrill Stachniss
- Abstract summary: We investigate the task of object goal navigation in unknown environments where the target is specified by a semantic label.
We propose a deep neural network architecture and loss function to predict dense cost maps that implicitly contain semantic context.
We also present a novel way of fusing mid-level visual representations in our architecture to provide additional semantic cues for cost map prediction.
- Score: 35.45993685414002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the task of object goal navigation in unknown environments
where the target is specified by a semantic label (e.g. find a couch). Such a
navigation task is especially challenging as it requires understanding of
semantic context in diverse settings. Most of the prior work tackles this
problem under the assumption of a discrete action policy whereas we present an
approach with continuous control which brings it closer to real world
applications. We propose a deep neural network architecture and loss function
to predict dense cost maps that implicitly contain semantic context and guide
the robot towards the semantic goal. We also present a novel way of fusing
mid-level visual representations in our architecture to provide additional
semantic cues for cost map prediction. The estimated cost maps are then used by
a sampling-based model predictive controller (MPC) for generating continuous
robot actions. The preliminary experiments suggest that the cost maps generated
by our network are suitable for the MPC and can guide the agent to the semantic
goal more efficiently than a baseline approach. The results also indicate the
importance of mid-level representations for navigation by improving the success
rate by 7 percentage points.
Related papers
- PRET: Planning with Directed Fidelity Trajectory for Vision and Language Navigation [30.710806048991923]
Vision and language navigation is a task that requires an agent to navigate according to a natural language instruction.
Recent methods predict sub-goals on constructed topology map at each step to enable long-term action planning.
We propose an alternative method that facilitates navigation planning by considering the alignment between instructions and directed fidelity trajectories.
arXiv Detail & Related papers (2024-07-16T08:22:18Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Navigating to Objects in Unseen Environments by Distance Prediction [16.023495311387478]
We propose an object goal navigation framework, which could directly perform path planning based on an estimated distance map.
Specifically, our model takes a birds-eye-view semantic map as input, and estimates the distance from the map cells to the target object.
With the estimated distance map, the agent could explore the environment and navigate to the target objects based on either human-designed or learned navigation policy.
arXiv Detail & Related papers (2022-02-08T09:22:50Z) - Learning to Map for Active Semantic Goal Navigation [40.193928212509356]
We propose a novel framework that actively learns to generate semantic maps outside the field of view of the agent.
We show how different objectives can be defined by balancing exploration with exploitation.
Our method is validated in the visually realistic environments offered by the Matterport3D dataset.
arXiv Detail & Related papers (2021-06-29T18:01:30Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.