論文の概要: Looking Outside the Window: Wider-Context Transformer for the Semantic
Segmentation of High-Resolution Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2106.15754v2
- Date: Thu, 1 Jul 2021 01:06:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 14:05:27.564779
- Title: Looking Outside the Window: Wider-Context Transformer for the Semantic
Segmentation of High-Resolution Remote Sensing Images
- Title(参考訳): 窓の外を見る:高分解能リモートセンシング画像の意味セグメンテーションのための広帯域トランスフォーマー
- Authors: Lei Ding, Dong Lin, Shaofu Lin, Jing Zhang, Xiaojie Cui, Yuebin Wang,
Hao Tang and Lorenzo Bruzzone
- Abstract要約: 高解像度(HR)リモートセンシング画像(RSI)のセマンティックセグメンテーションのためのワイド・コンテキスト・ネットワーク(WiCNet)を提案する。
WiCNetでは、従来の特徴抽出ネットワークとは別に、より大きな画像領域におけるコンテキスト情報を明示的にモデル化する追加のコンテキストブランチが設計されている。
この2つの分岐間の情報はコンテキスト変換器を通して伝達されるが、これは長距離コンテキスト相関をモデル化するためのビジョン変換器から派生した新しい設計である。
- 参考スコア(独自算出の注目度): 18.161847218988964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-range context information is crucial for the semantic segmentation of
High-Resolution (HR) Remote Sensing Images (RSIs). The image cropping
operations, commonly used for training neural networks, limit the perception of
long-range context information in large RSIs. To break this limitation, we
propose a Wider-Context Network (WiCNet) for the semantic segmentation of HR
RSIs. In the WiCNet, apart from a conventional feature extraction network to
aggregate the local information, an extra context branch is designed to
explicitly model the context information in a larger image area. The
information between the two branches is communicated through a Context
Transformer, which is a novel design derived from the Vision Transformer to
model the long-range context correlations. Ablation studies and comparative
experiments conducted on several benchmark datasets prove the effectiveness of
the proposed method. Additionally, we present a new Beijing Land-Use (BLU)
dataset. This is a large-scale HR satellite dataset provided with high-quality
and fine-grained reference labels, which we hope will boost future studies in
this field.
- Abstract(参考訳): 高解像度(HR)リモートセンシング画像(RSI)のセマンティックセグメンテーションには,長距離コンテキスト情報が不可欠である。
ニューラルネットワークのトレーニングに一般的に使用される画像トリッピング操作は、大規模rsisにおける長距離コンテキスト情報の知覚を制限する。
この制限を破るために、HR RSIのセマンティックセグメンテーションのためのワイド・コンテキスト・ネットワーク(WiCNet)を提案する。
wicnetでは、ローカル情報を集約する従来の特徴抽出ネットワークとは別に、より大きな画像領域でコンテキスト情報を明示的にモデル化する追加コンテキストブランチが設計されている。
2つの分岐間の情報は、視野変換器から派生した新しい設計であるコンテキスト変換器を介して伝達され、長距離コンテキスト相関をモデル化する。
いくつかのベンチマークデータセットで行ったアブレーション研究と比較実験により,提案手法の有効性が証明された。
さらに,新しい北京土地利用データセット(blu)を提案する。
これは、高品質できめ細かいレファレンスラベルを備えた大規模なHR衛星データセットであり、この分野での今後の研究を促進することを願っている。
関連論文リスト
- ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - RRSIS: Referring Remote Sensing Image Segmentation [25.538406069768662]
リモートセンシング画像から所望のオブジェクトをローカライズすることは、実用的な用途において非常に有用である。
与えられた表現が参照する対象を分割することを目的とした画像分割の参照は、自然画像において広範囲に研究されている。
本稿では、このギャップを埋めるため、リモートセンシング画像セグメンテーション(RRSIS)を紹介し、洞察に富んだ探索を行う。
論文 参考訳(メタデータ) (2023-06-14T16:40:19Z) - Deep Attention Unet: A Network Model with Global Feature Perception
Ability [12.087640144194246]
本稿では,チャネル自己注意機構と残差接続に基づく新しいタイプのUNet画像分割アルゴリズムを提案する。
私の実験では、新しいネットワークモデルは、FoodNetデータセット上の従来のUNetと比較して、mIOUを2.48%改善しました。
論文 参考訳(メタデータ) (2023-04-21T09:12:29Z) - Unsupervised domain adaptation semantic segmentation of high-resolution
remote sensing imagery with invariant domain-level context memory [10.210120085157161]
本研究では,HRS画像のセマンティックセマンティックセマンティックセマンティクスのための,教師なし領域適応セマンティクスネットワーク(MemoryAdaptNet)を提案する。
MemoryAdaptNetは、ソースドメインとターゲットドメイン間のドメイン分布の不一致をブリッジするために、出力空間逆学習スキームを構築する。
3つのクロスドメインタスクによる実験は、提案したMemoryAdaptNetが最先端の手法よりもはるかに優れていることを示している。
論文 参考訳(メタデータ) (2022-08-16T12:35:57Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
特徴抽出のプロセスを改善するために,新しいコンテキスト集約ネットワーク(CATNet)を提案する。
提案モデルは,高密度特徴ピラミッドネットワーク(DenseFPN),空間コンテキストピラミッド(SCP),階層的関心抽出器(HRoIE)の3つの軽量プラグアンドプレイモジュールを利用する。
論文 参考訳(メタデータ) (2021-11-22T08:55:25Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
本稿では,リモートセンシング画像(RSI-Net)のセマンティックセグメンテーションのための2ストリームディープニューラルネットワークを提案する。
実験はVayhingen、Potsdam、Gaofen RSIデータセットで実施されている。
その結果,6つの最先端RSIセマンティックセグメンテーション法と比較して,総合的精度,F1スコア,カッパ係数において,RSI-Netの優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-19T15:57:20Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
微調整されたセマンティックセグメンテーションは、近年深く研究されている困難な問題です。
本稿では、オブジェクトが現れる固有のコンテキストを変更する Context Decoupling Augmentation (CDA) メソッドを紹介します。
提案手法の有効性を検証するため, PASCAL VOC 2012データセットにいくつかの代替ネットワークアーキテクチャを用いた広範な実験を行い, CDAが様々なWSSS手法を新たな最先端技術に拡張できることを実証した。
論文 参考訳(メタデータ) (2021-03-02T15:05:09Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
GAN(Generative Adversarial Network)のための代替U-Netベースの識別器アーキテクチャを提案する。
提案アーキテクチャにより,合成画像のグローバルコヒーレンスを維持しつつ,画素単位の詳細なフィードバックを生成元に提供することができる。
斬新な判別器は、標準分布と画像品質の指標の観点から、最先端の技術を向上する。
論文 参考訳(メタデータ) (2020-02-28T11:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。