論文の概要: CityNet: A Comprehensive Multi-Modal Urban Dataset for Advanced Research in Urban Computing
- arxiv url: http://arxiv.org/abs/2106.15802v2
- Date: Wed, 10 Apr 2024 14:11:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 20:04:52.508255
- Title: CityNet: A Comprehensive Multi-Modal Urban Dataset for Advanced Research in Urban Computing
- Title(参考訳): CityNet: 都市コンピューティングにおける高度な研究のための総合的マルチモーダル都市データセット
- Authors: Zhengfei Zheng, Xu Geng, Hai Yang,
- Abstract要約: 我々は,7つの都市からのさまざまなデータを組み込んだマルチモーダル都市データセットであるCityNetを紹介する。
我々はCityNetの利用を促進するために、広範なデータマイニングと機械学習の実験を行っている。
- 参考スコア(独自算出の注目度): 1.9774168196078137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven approaches have emerged as a popular tool for addressing challenges in urban computing. However, current research efforts have primarily focused on limited data sources, which fail to capture the complexity of urban data arising from multiple entities and their interconnections. Therefore, a comprehensive and multifaceted dataset is required to enable more extensive studies in urban computing. In this paper, we present CityNet, a multi-modal urban dataset that incorporates various data, including taxi trajectory, traffic speed, point of interest (POI), road network, wind, rain, temperature, and more, from seven cities. We categorize this comprehensive data into three streams: mobility data, geographical data, and meteorological data. We begin by detailing the generation process and basic properties of CityNet. Additionally, we conduct extensive data mining and machine learning experiments, including spatio-temporal predictions, transfer learning, and reinforcement learning, to facilitate the use of CityNet. Our experimental results provide benchmarks for various tasks and methods, and also reveal internal correlations among cities and tasks within CityNet that can be leveraged to improve spatiotemporal forecasting performance. Based on our benchmarking results and the correlations uncovered, we believe that CityNet can significantly contribute to the field of urban computing by enabling research on advanced topics.
- Abstract(参考訳): データ駆動型アプローチは、都市コンピューティングにおける課題に対処するための一般的なツールとして登場した。
しかし、現在の研究は、主に限られたデータソースに焦点を当てており、複数のエンティティとその相互接続から生じる都市データの複雑さを捉えていない。
したがって、都市コンピューティングにおけるより広範な研究を可能にするために、包括的で多面的なデータセットが必要である。
本稿では,タクシーの軌跡,交通速度,関心点(POI),道路網,風,雨,温度など,さまざまなデータを組み込んだマルチモーダル都市データセットであるCityNetを提案する。
この包括的データを,移動データ,地理的データ,気象データという3つのストリームに分類する。
まず、CityNetの生成プロセスと基本特性について詳述する。
さらに,CityNetの利用を促進するために,時空間予測や移動学習,強化学習など,広範なデータマイニングと機械学習の実験を行っている。
実験の結果,様々なタスクと手法のベンチマークが得られた。また,CityNet内の都市とタスク間の内部相関が,時空間予測性能の向上に有効であることがわかった。
このベンチマーク結果と相関関係から,CityNetは先進的なトピックの研究を可能にすることで,都市コンピューティングの分野に大きく貢献できると考えている。
関連論文リスト
- Deep Learning for Cross-Domain Data Fusion in Urban Computing: Taxonomy, Advances, and Outlook [28.103555959143645]
本稿では,都市コンピューティングに適した深層学習に基づくデータ融合手法の最近の進歩を体系的にレビューする最初の調査を提案する。
提案手法は,特徴ベース,アライメントベース,コントラストベース,生成ベース融合の4つのカテゴリに分類される。
さらに, 都市計画, 交通, 経済, 公共安全, 社会, 環境, エネルギーの7つのタイプに分類した。
論文 参考訳(メタデータ) (2024-02-29T16:56:23Z) - Point Cloud Segmentation Using Transfer Learning with RandLA-Net: A Case
Study on Urban Areas [0.5242869847419834]
本稿では,都市部における大規模クラウドデータの3次元セグメンテーションのための最先端のニューラルネットワークアーキテクチャであるRandLA-Netの応用について述べる。
この研究は中国三大都市、Chengdu、Jiaoda、Shnzhenに焦点を当て、セグメンテーション性能を高めるためにその特徴を活用している。
論文 参考訳(メタデータ) (2023-12-19T06:13:58Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - The Urban Toolkit: A Grammar-based Framework for Urban Visual Analytics [5.674216760436341]
都市問題の複雑な性質と利用可能なデータの圧倒的な量は、これらの取り組みを実用的な洞察に翻訳する上で大きな課題を提起している。
興味のある特徴を分析する際、都市の専門家は、異なるテーマ(例えば、日光アクセス、人口統計)と物理的(例えば、建物、ストリートネットワーク)のデータ層を変換し、統合し、視覚化しなければならない。
これにより、プログラマにとって視覚的なデータ探索とシステム実装が難しくなり、コンピュータ科学以外の都市の専門家にとって高い入り口障壁となる。
論文 参考訳(メタデータ) (2023-08-15T13:43:04Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z) - City limits in the age of smartphones and urban scaling [0.0]
都市計画は、都市システム全体にわたる都市境界を定義するための適切な基準をまだ欠いている。
ICTは、都市システムのより正確な記述を記述する可能性を提供する。
都市境界を定義するため,大量の携帯電話記録に計算手法を適用した。
論文 参考訳(メタデータ) (2020-05-06T17:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。