論文の概要: An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation
- arxiv url: http://arxiv.org/abs/2108.07698v1
- Date: Mon, 2 Aug 2021 08:13:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-22 14:36:54.696262
- Title: An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation
- Title(参考訳): 各種データソースと交通量推定モデルを用いた都市事例実験
- Authors: Alexander Genser and Noel Hautle and Michail Makridis and Anastasios
Kouvelas
- Abstract要約: 我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
- 参考スコア(独自算出の注目度): 65.28133251370055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate estimation of the traffic state over a network is essential since it
is the starting point for designing and implementing any traffic management
strategy. Hence, traffic operators and users of a transportation network can
make reliable decisions such as influence/change route or mode choice. However,
the problem of traffic state estimation from various sensors within an urban
environment is very complex for several different reasons, such as availability
of sensors, different noise levels, different output quantities, sensor
accuracy, heterogeneous data fusion, and many more. To provide a better
understanding of this problem, we organized an experimental campaign with video
measurement in an area within the urban network of Zurich, Switzerland. We
focus on capturing the traffic state in terms of traffic flow and travel times
by ensuring measurements from established thermal cameras by the city's
authorities, processed video data, and the Google Distance Matrix. We assess
the different data sources, and we propose a simple yet efficient Multiple
Linear Regression (MLR) model to estimate travel times with fusion of various
data sources. Comparative results with ground-truth data (derived from video
measurements) show the efficiency and robustness of the proposed methodology.
- Abstract(参考訳): トラフィック管理戦略を設計・実装するための出発点であるため,ネットワーク上でのトラフィック状態の正確な推定が不可欠である。
したがって、交通網の交通事業者や利用者は、影響・変更経路やモード選択などの信頼できる判断を行うことができる。
しかし, 都市環境における各種センサからの交通状況推定の問題は, センサの可利用性, ノイズレベル, 出力量, センサ精度, 異種データ融合など, 様々な理由で非常に複雑である。
この問題をよりよく理解するために,スイスのチューリッヒ都市ネットワーク内の地域において,ビデオ計測を用いた実験キャンペーンを実施した。
都市当局が設置したサーマルカメラからの計測、ビデオデータ処理、google distance matrixの計測により、交通の流れと走行時間の観点から交通状況の把握に重点を置いている。
異なるデータソースを評価し,様々なデータソースの融合により移動時間を推定するための単純かつ効率的な多重線形回帰(mlr)モデルを提案する。
実測データとの比較により,提案手法の有効性と頑健性が示された。
関連論文リスト
- Traffic estimation in unobserved network locations using data-driven
macroscopic models [2.3543188414616534]
本稿では,自動交通カウンタとプローブ車両から収集したマクロモデルとマルチソースデータを利用して,これらの測定が不可能なリンクにおいて,交通流と走行時間を正確に推定する。
MaTEはマクロフロー理論に基礎を置いているため、全てのパラメータと変数は解釈可能である。
合成データを用いた実験により, サンプル外リンクの走行時間と交通流を正確に推定できることがわかった。
論文 参考訳(メタデータ) (2024-01-30T15:21:50Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
渋滞や事故の場合に交通が後進的に伝播し,道路の他の部分への全体的影響を示す。
また、実時間トラフィックデータに基づいて連続的なRNN-LSTM(Long Short-Term Memory)ディープラーニングモデルを訓練し、道路固有の渋滞に基づいてシミュレーション結果の精度を評価する。
論文 参考訳(メタデータ) (2023-04-01T01:23:10Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
そこで我々は,他の都市からのビッグデータを用いて交通予測を行う都市間交通予測手法であるTrafficTLを提案する。
TrafficTLは3つの実世界のデータセットの包括的なケーススタディによって評価され、最先端のベースラインを約8~25%上回る。
論文 参考訳(メタデータ) (2023-03-13T15:27:07Z) - Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes [21.13555047611666]
本稿では,標準等方性GPカーネルを異方性カーネルに変換するカーネル回転再パラメータ化方式を提案する。
また、複数のレーンの交通状態を同時に推定できるマルチアウトプットGPへのアプローチも拡張しています。
連結車両(CV)と人間駆動車両(HV)の混合交通について検討し,交通状態推定(TSE)方式を5%から50%まで実験した。
論文 参考訳(メタデータ) (2023-03-04T03:59:17Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Multistep traffic speed prediction: A deep learning based approach using
latent space mapping considering spatio-temporal dependencies [2.3204178451683264]
ITSは、過去のトラフィックデータと現在のトラフィックデータに基づいて、複数の時間ステップで正確なトラフィック予測を提供する、信頼性の高いトラフィック予測を必要とする。
深層学習に基づくアプローチは,空間的依存と時間的依存の両方を用いて開発されている。
提案手法は,最小誤差の60分前予測においても,正確な交通予測結果を提供することがわかった。
論文 参考訳(メタデータ) (2021-11-03T10:17:48Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。