BLNet: A Fast Deep Learning Framework for Low-Light Image Enhancement
with Noise Removal and Color Restoration
- URL: http://arxiv.org/abs/2106.15953v1
- Date: Wed, 30 Jun 2021 10:06:16 GMT
- Title: BLNet: A Fast Deep Learning Framework for Low-Light Image Enhancement
with Noise Removal and Color Restoration
- Authors: Xinxu Wei, Xianshi Zhang, Shisen Wang, Cheng Cheng, Yanlin Huang,
Kaifu Yang, and Yongjie Li
- Abstract summary: We propose a very fast deep learning framework called Bringing the Lightness (denoted as BLNet)
Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination.
We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization.
- Score: 14.75902042351609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Images obtained in real-world low-light conditions are not only low in
brightness, but they also suffer from many other types of degradation, such as
color bias, unknown noise, detail loss and halo artifacts. In this paper, we
propose a very fast deep learning framework called Bringing the Lightness
(denoted as BLNet) that consists of two U-Nets with a series of well-designed
loss functions to tackle all of the above degradations. Based on Retinex
Theory, the decomposition net in our model can decompose low-light images into
reflectance and illumination and remove noise in the reflectance during the
decomposition phase. We propose a Noise and Color Bias Control module (NCBC
Module) that contains a convolutional neural network and two loss functions
(noise loss and color loss). This module is only used to calculate the loss
functions during the training phase, so our method is very fast during the test
phase. This module can smooth the reflectance to achieve the purpose of noise
removal while preserving details and edge information and controlling color
bias. We propose a network that can be trained to learn the mapping between
low-light and normal-light illumination and enhance the brightness of images
taken in low-light illumination. We train and evaluate the performance of our
proposed model over the real-world Low-Light (LOL) dataset), and we also test
our model over several other frequently used datasets (LIME, DICM and MEF
datasets). We conduct extensive experiments to demonstrate that our approach
achieves a promising effect with good rubustness and generalization and
outperforms many other state-of-the-art methods qualitatively and
quantitatively. Our method achieves high speed because we use loss functions
instead of introducing additional denoisers for noise removal and color
correction. The code and model are available at
https://github.com/weixinxu666/BLNet.
Related papers
- You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - Zero-Shot Enhancement of Low-Light Image Based on Retinex Decomposition [4.175396687130961]
We propose a new learning-based Retinex decomposition of zero-shot low-light enhancement method, called ZERRINNet.
Our method is a zero-reference enhancement method that is not affected by the training data of paired and unpaired datasets.
arXiv Detail & Related papers (2023-11-06T09:57:48Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - KinD-LCE Curve Estimation And Retinex Fusion On Low-Light Image [7.280719886684936]
This paper proposes an algorithm for low illumination enhancement.
KinD-LCE uses a light curve estimation module to enhance the illumination map in the Retinex decomposed image.
An illumination map and reflection map fusion module were also proposed to restore the image details and reduce detail loss.
arXiv Detail & Related papers (2022-07-19T11:49:21Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - Low-light Image Enhancement via Breaking Down the Darkness [8.707025631892202]
This paper presents a novel framework inspired by the divide-and-rule principle.
We propose to convert an image from the RGB space into a luminance-chrominance one.
An adjustable noise suppression network is designed to eliminate noise in the brightened luminance.
The enhanced luminance further serves as guidance for the chrominance mapper to generate realistic colors.
arXiv Detail & Related papers (2021-11-30T16:50:59Z) - DA-DRN: Degradation-Aware Deep Retinex Network for Low-Light Image
Enhancement [14.75902042351609]
We propose a Degradation-Aware Deep Retinex Network (denoted as DA-DRN) for low-light image enhancement and tackle the above degradation.
Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination maps.
We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization.
arXiv Detail & Related papers (2021-10-05T03:53:52Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.