On quantum Hall effect: Covariant derivatives, Wilson lines, gauge
potentials, lattice Weyl transforms, and Chern numbers
- URL: http://arxiv.org/abs/2106.16238v1
- Date: Wed, 30 Jun 2021 17:48:59 GMT
- Title: On quantum Hall effect: Covariant derivatives, Wilson lines, gauge
potentials, lattice Weyl transforms, and Chern numbers
- Authors: Felix A. Buot
- Abstract summary: We show that the gauge symmetry of the nonequilibrium quantum transport of Chern insulator in a uniform electric field is governed by the Wilson line of parallel transport operator.
This is dictated by the minimal coupling of derivatives with gauge fields in U (1) gauge theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that the gauge symmetry of the nonequilibrium quantum transport of
Chern insulator in a uniform electric field is governed by the Wilson line of
parallel transport operator coupled with the dynamical translation operator.
This is dictated by the minimal coupling of derivatives with gauge fields in U
(1) gauge theory. This parallel transport symmetry consideration leads to the
integer quantum Hall effect in electrical conductivity obtained to first-order
gradient expansion of the nonequilibrium quantum transport equations.
Related papers
- Mesoscopic theory of the Josephson junction [44.99833362998488]
We derive a mesoscopic theory of the Josephson junction from non-relativistic scalar electrodynamics.
By providing an ab initio derivation of the charge qubit Hamiltonian, we progress toward the quantum engineering of superconducting circuits at the subnanometer scale.
arXiv Detail & Related papers (2024-11-08T15:29:07Z) - Geodesic nature and quantization of shift vector [3.998284861927654]
We present the geodesic nature and quantization of geometric shift vector in quantum systems.
Our analysis extends to include bosonic phonon drag shift vectors with non-vertical transitions.
We reveal intricate relationships among geometric quantities such as the shift vector, Berry curvature, and quantum metric.
arXiv Detail & Related papers (2024-05-22T05:18:52Z) - Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
We propose a hybrid platform, in which a right-handed transmission line is connected to a left-handed transmission line by means of a superconducting quantum interference device (SQUID)
We show that, by activating specific resonance conditions, this platform can be used as a quantum simulator of different phenomena in quantum optics, multimode quantum systems and quantum thermodynamics.
arXiv Detail & Related papers (2024-03-13T13:15:14Z) - Generalized transmon Hamiltonian for Andreev spin qubits [0.0]
We solve the problem of an interacting quantum dot embedded in a Josephson junction between two superconductors with finite charging energy.
The approach is based on the flat-band approximation of the Richardson model, which reduces the Hilbert space to the point where exact diagonalisation is possible.
arXiv Detail & Related papers (2024-02-03T10:58:08Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Quantum electron transport controlled by cavity vacuum fields [0.0]
We study theoretically how the coupling to cavity vacuum fields affects the electron transport in quantum conductors.
We show how the cavity vacuum fields can lead to both large enhancement or suppression of electron conductance in the ballistic regime.
arXiv Detail & Related papers (2022-06-27T16:27:16Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Non-Abelian Quantum Transport and Thermosqueezing Effects [0.0]
We set forth a theory for non-Abelian transport in the linear response regime.
We show that the transport coefficients obey Onsager reciprocity.
quantum coherence, associated to the non-commutativity, acts so as to reduce the net entropy production.
arXiv Detail & Related papers (2020-11-09T16:58:22Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.