Scalable Certified Segmentation via Randomized Smoothing
- URL: http://arxiv.org/abs/2107.00228v1
- Date: Thu, 1 Jul 2021 05:52:39 GMT
- Title: Scalable Certified Segmentation via Randomized Smoothing
- Authors: Marc Fischer, Maximilian Baader, Martin Vechev
- Abstract summary: We present a new certification method for image and point cloud segmentation based on randomized smoothing.
We show that our algorithm can achieve, for the first time, competitive accuracy and certification guarantees on real-world segmentation tasks.
- Score: 9.775834440292487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new certification method for image and point cloud segmentation
based on randomized smoothing. The method leverages a novel scalable algorithm
for prediction and certification that correctly accounts for multiple testing,
necessary for ensuring statistical guarantees. The key to our approach is
reliance on established multiple-testing correction mechanisms as well as the
ability to abstain from classifying single pixels or points while still
robustly segmenting the overall input. Our experimental evaluation on synthetic
data and challenging datasets, such as Pascal Context, Cityscapes, and
ShapeNet, shows that our algorithm can achieve, for the first time, competitive
accuracy and certification guarantees on real-world segmentation tasks. We
provide an implementation at https://github.com/eth-sri/segmentation-smoothing.
Related papers
- BiCert: A Bilinear Mixed Integer Programming Formulation for Precise Certified Bounds Against Data Poisoning Attacks [62.897993591443594]
Data poisoning attacks pose one of the biggest threats to modern AI systems.
Data poisoning attacks pose one of the biggest threats to modern AI systems.
Data poisoning attacks pose one of the biggest threats to modern AI systems.
arXiv Detail & Related papers (2024-12-13T14:56:39Z) - Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions.
Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty.
We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components.
arXiv Detail & Related papers (2024-02-13T11:59:43Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation [5.484296906525601]
Semi-supervised semantic segmentation learns a model for classifying pixels into specific classes using a few labeled samples and numerous unlabeled images.
We propose a class-adaptive semisupervision framework for semi-supervised semantic segmentation (CAFS)
CAFS constructs a validation set on a labeled dataset, to leverage the calibration performance for each class.
arXiv Detail & Related papers (2023-03-21T05:56:53Z) - Smooth-Reduce: Leveraging Patches for Improved Certified Robustness [100.28947222215463]
We propose a training-free, modified smoothing approach, Smooth-Reduce.
Our algorithm classifies overlapping patches extracted from an input image, and aggregates the predicted logits to certify a larger radius around the input.
We provide theoretical guarantees for such certificates, and empirically show significant improvements over other randomized smoothing methods.
arXiv Detail & Related papers (2022-05-12T15:26:20Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
We propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN)
In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent.
This is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model.
arXiv Detail & Related papers (2021-03-17T21:49:53Z) - Data Dependent Randomized Smoothing [127.34833801660233]
We show that our data dependent framework can be seamlessly incorporated into 3 randomized smoothing approaches.
We get 9% and 6% improvement over the certified accuracy of the strongest baseline for a radius of 0.5 on CIFAR10 and ImageNet.
arXiv Detail & Related papers (2020-12-08T10:53:11Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.