論文の概要: Reparameterized Sampling for Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2107.00352v1
- Date: Thu, 1 Jul 2021 10:34:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:58:28.343625
- Title: Reparameterized Sampling for Generative Adversarial Networks
- Title(参考訳): 生成逆ネットワークに対する再パラメータ化サンプリング
- Authors: Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- Abstract要約: 本稿では,マルコフ連鎖をジェネレータの潜在空間に再配置することで,一般依存型提案を可能にする新しいサンプリング手法REP-GANを提案する。
実験的な実験により、我々のREP-GANはサンプル効率を大幅に改善し、同時により良いサンプル品質を得ることを示した。
- 参考スコア(独自算出の注目度): 71.30132908130581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, sampling methods have been successfully applied to enhance the
sample quality of Generative Adversarial Networks (GANs). However, in practice,
they typically have poor sample efficiency because of the independent proposal
sampling from the generator. In this work, we propose REP-GAN, a novel sampling
method that allows general dependent proposals by REParameterizing the Markov
chains into the latent space of the generator. Theoretically, we show that our
reparameterized proposal admits a closed-form Metropolis-Hastings acceptance
ratio. Empirically, extensive experiments on synthetic and real datasets
demonstrate that our REP-GAN largely improves the sample efficiency and obtains
better sample quality simultaneously.
- Abstract(参考訳): 近年,GAN(Generative Adversarial Networks)のサンプル品質向上のためのサンプリング手法が成功している。
しかし、実際には、ジェネレータからの独立した提案サンプリングのため、サンプル効率が低いのが一般的である。
本研究では,マルコフ鎖をジェネレータの潜在空間に再パラメータ化することにより,汎用的な提案を可能にする新しいサンプリング手法であるrep-ganを提案する。
理論的には、我々の再パラメータ化提案は、閉形式のメトロポリス・ハスティングスの受け入れ比を許容することを示す。
実験的な実験により、我々のREP-GANはサンプル効率を大幅に改善し、同時により良いサンプル品質を得ることを示した。
関連論文リスト
- A Block Metropolis-Hastings Sampler for Controllable Energy-based Text
Generation [78.81021361497311]
我々は,大規模言語モデルの反復的プロンプトを通じて,各ステップにおけるシーケンス全体の書き直しを提案する新しいメトロポリス・ハスティングス(MH)サンプリング器を開発した。
対象分布からより効率的かつ正確なサンプリングが可能となり, (b) 事前に固定するのではなく, サンプリング手順により生成長を決定することが可能となった。
論文 参考訳(メタデータ) (2023-12-07T18:30:15Z) - Optimal Budgeted Rejection Sampling for Generative Models [54.050498411883495]
判別器を用いた生成モデルの性能向上のために, 還元サンプリング法が提案されている。
提案手法は,まず,最適に最適である最適予算削減サンプリング方式を提案する。
第2に,モデル全体の性能を高めるために,サンプリング方式をトレーニング手順に組み込んだエンドツーエンド手法を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:52:41Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
非正規化対象分布からの効率的なサンプリングは、科学計算と機械学習の基本的な問題である。
本稿では,これらの制約を克服する,効率的でスケーラブルなニューラル暗黙サンプリング手法を提案する。
提案手法では, 提案手法を応用して, 提案手法を用いることにより, 精度の低い大量のサンプルを生成できる。
論文 参考訳(メタデータ) (2023-06-08T05:56:05Z) - Off-Policy RL Algorithms Can be Sample-Efficient for Continuous Control
via Sample Multiple Reuse [28.29966904455002]
固定されたサンプルバッチを複数回更新することで、外部のRLエージェントをトレーニングすることを提案する。
我々は,本手法のサンプル多重再利用(SMR)を命名し,SMRを用いたQ-ラーニングの特性を示す。
SMRは、評価されたタスクのほとんどにわたって、ベースメソッドのサンプル効率を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-29T03:25:22Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
本稿では,GAN生成サンプルの多様性を選択的に向上する手法を提案する。
本研究では,CERN における ALICE 実験のZero Degree Calorimeter から得られたデータをシミュレーションする実生活シナリオとともに,本手法の優位性を示す。
論文 参考訳(メタデータ) (2022-07-04T16:27:06Z) - Sampling from Discrete Energy-Based Models with Quality/Efficiency
Trade-offs [3.491202838583993]
エネルギーベースモデル(EBM)は、確率分布の非常に柔軟な仕様を可能にする。
これらの分布から正確なサンプルを得るためのメカニズムは提供されていない。
そこで本研究では,サンプリング効率とサンプリング品質のトレードオフを可能にする,新しい近似サンプリング手法であるQuasi Rejection Smpling (QRS)を提案する。
論文 参考訳(メタデータ) (2021-12-10T17:51:37Z) - Sampling-Decomposable Generative Adversarial Recommender [84.05894139540048]
サンプル分解可能な生成逆数レコメンダ(SD-GAR)を提案する。
本フレームワークでは, 自己正規化重要度サンプリングにより, 生成元と最適値とのばらつきを補償する。
提案アルゴリズムを5つの実世界のレコメンデーションデータセットを用いて広範囲に評価する。
論文 参考訳(メタデータ) (2020-11-02T13:19:10Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Self-Adversarial Learning with Comparative Discrimination for Text
Generation [111.18614166615968]
本稿では,テキスト生成におけるGANの性能向上のための,新たな自己逆学習(SAL)パラダイムを提案する。
トレーニング中、SALは、現在生成された文が以前生成されたサンプルより優れていると判断されたときにジェネレータに報酬を与える。
テキスト生成ベンチマークデータセットの実験により,提案手法は品質と多様性の両方を大幅に改善することが示された。
論文 参考訳(メタデータ) (2020-01-31T07:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。