論文の概要: Optimal Budgeted Rejection Sampling for Generative Models
- arxiv url: http://arxiv.org/abs/2311.00460v2
- Date: Fri, 1 Mar 2024 10:56:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-04 14:11:02.983250
- Title: Optimal Budgeted Rejection Sampling for Generative Models
- Title(参考訳): 生成モデルに対する最適予算削減サンプリング
- Authors: Alexandre Verine and Muni Sreenivas Pydi and Benjamin Negrevergne and
Yann Chevaleyre
- Abstract要約: 判別器を用いた生成モデルの性能向上のために, 還元サンプリング法が提案されている。
提案手法は,まず,最適に最適である最適予算削減サンプリング方式を提案する。
第2に,モデル全体の性能を高めるために,サンプリング方式をトレーニング手順に組み込んだエンドツーエンド手法を提案する。
- 参考スコア(独自算出の注目度): 54.050498411883495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rejection sampling methods have recently been proposed to improve the
performance of discriminator-based generative models. However, these methods
are only optimal under an unlimited sampling budget, and are usually applied to
a generator trained independently of the rejection procedure. We first propose
an Optimal Budgeted Rejection Sampling (OBRS) scheme that is provably optimal
with respect to \textit{any} $f$-divergence between the true distribution and
the post-rejection distribution, for a given sampling budget. Second, we
propose an end-to-end method that incorporates the sampling scheme into the
training procedure to further enhance the model's overall performance. Through
experiments and supporting theory, we show that the proposed methods are
effective in significantly improving the quality and diversity of the samples.
- Abstract(参考訳): 弁別器に基づく生成モデルの性能を向上させるために,最近,拒絶サンプリング法が提案されている。
しかし、これらの方法は無制限のサンプリング予算でのみ最適であり、通常、拒絶手続きとは独立に訓練された生成器に適用される。
提案手法は,まず,所定のサンプリング予算に対して,真の分布とポストリジェクション分布の間の$f$-divergenceに対して,有効に最適である最適バッジリジェクションサンプリング(OBRS)方式を提案する。
第2に,モデル全体の性能を高めるために,サンプリング方式をトレーニング手順に組み込んだエンドツーエンド手法を提案する。
実験と支持理論により,提案手法は試料の品質と多様性を著しく向上させるのに有効であることを示した。
関連論文リスト
- Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Implicit Diffusion: Efficient Optimization through Stochastic Sampling [46.049117719591635]
パラメータ化拡散により暗黙的に定義された分布を最適化するアルゴリズムを提案する。
本稿では,これらのプロセスの1次最適化のための一般的なフレームワークについて紹介する。
エネルギーベースモデルのトレーニングや拡散の微調整に応用する。
論文 参考訳(メタデータ) (2024-02-08T08:00:11Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
拡散モデルのランダム性は非効率性と不安定性をもたらすため、SR結果の品質を保証することは困難である。
本稿では,一連の拡散型SR手法の恩恵を受ける可能性を持つプラグアンドプレイサンプリング手法を提案する。
提案手法によりサンプリングされたSR結果の質は, 学習前の拡散ベースSRモデルと同一のランダム性を有する現在の手法でサンプリングされた結果の質より優れる。
論文 参考訳(メタデータ) (2023-05-24T17:09:54Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
本稿では, 後方分布から効率的にサンプリングするために, 可変分割を利用したプラグアンドプレイサンプリングアルゴリズムを提案する。
後方サンプリングの課題を2つの単純なサンプリング問題に分割する。
その性能は最近の最先端の最適化とサンプリング手法と比較される。
論文 参考訳(メタデータ) (2023-04-21T17:17:51Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
強化学習のための既存の後方サンプリング手法は、モデルベースであるか、線形MDPを超える最悪の理論的保証がないかによって制限される。
本稿では,理論的保証を伴うより一般的な補足的強化学習問題に適用可能な,後部サンプリングのモデルフリーな新しい定式化を提案する。
論文 参考訳(メタデータ) (2022-08-23T12:21:01Z) - Reparameterized Sampling for Generative Adversarial Networks [71.30132908130581]
本稿では,マルコフ連鎖をジェネレータの潜在空間に再配置することで,一般依存型提案を可能にする新しいサンプリング手法REP-GANを提案する。
実験的な実験により、我々のREP-GANはサンプル効率を大幅に改善し、同時により良いサンプル品質を得ることを示した。
論文 参考訳(メタデータ) (2021-07-01T10:34:55Z) - Variance Reduction for Better Sampling in Continuous Domains [5.675136204504504]
最適探索分布は, 先行分布よりも分布の中心付近でピークとなる可能性が示唆された。
本研究では, 人口規模に応じて, 探索分布を変形させるための明示的な値を提供する。
論文 参考訳(メタデータ) (2020-04-24T12:25:48Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。