論文の概要: CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous
Cars on the Loihi Neuromorphic Research Processor
- arxiv url: http://arxiv.org/abs/2107.00401v1
- Date: Thu, 1 Jul 2021 12:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:32:51.353888
- Title: CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous
Cars on the Loihi Neuromorphic Research Processor
- Title(参考訳): CarSNN:Loihiニューロモーフィック研究プロセッサ上のイベントベース自律車のための効率的なスパイクニューラルネットワーク
- Authors: Alberto Viale and Alberto Marchisio and Maurizio Martina and Guido
Masera and Muhammad Shafique
- Abstract要約: スパイキングニューラルネットワーク(SNN)は低レイテンシと低消費電力で高性能を実現する。
本稿では、イベントベースカメラに接続されたSNNを用いて、自律運転(AD)の重要な問題に直面する。
実験はオフラインで教師付き学習規則に従って行われ、学習したSNNモデルをIntel Loihi Neuromorphic Research Chipにマッピングする。
- 参考スコア(独自算出の注目度): 15.093607722961407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Driving (AD) related features provide new forms of mobility that
are also beneficial for other kind of intelligent and autonomous systems like
robots, smart transportation, and smart industries. For these applications, the
decisions need to be made fast and in real-time. Moreover, in the quest for
electric mobility, this task must follow low power policy, without affecting
much the autonomy of the mean of transport or the robot. These two challenges
can be tackled using the emerging Spiking Neural Networks (SNNs). When deployed
on a specialized neuromorphic hardware, SNNs can achieve high performance with
low latency and low power consumption. In this paper, we use an SNN connected
to an event-based camera for facing one of the key problems for AD, i.e., the
classification between cars and other objects. To consume less power than
traditional frame-based cameras, we use a Dynamic Vision Sensor (DVS). The
experiments are made following an offline supervised learning rule, followed by
mapping the learnt SNN model on the Intel Loihi Neuromorphic Research Chip. Our
best experiment achieves an accuracy on offline implementation of 86%, that
drops to 83% when it is ported onto the Loihi Chip. The Neuromorphic Hardware
implementation has maximum 0.72 ms of latency for every sample, and consumes
only 310 mW. To the best of our knowledge, this work is the first
implementation of an event-based car classifier on a Neuromorphic Chip.
- Abstract(参考訳): 自律運転(AD)関連機能は、ロボット、スマートトランスポーテーション、スマート産業など、他のインテリジェントで自律的なシステムにも有益な、新しい形態のモビリティを提供する。
これらのアプリケーションでは、意思決定を迅速かつリアルタイムで行う必要があります。
さらに、電動モビリティの追求では、このタスクは輸送手段やロボットの自律性に大きな影響を与えずに、低電力政策に従わなければならない。
これら2つの課題は、新興のスパイキングニューラルネットワーク(SNN)を使用して対処することができる。
特殊なニューロモルフィックハードウェアにデプロイすると、SNNは低レイテンシと低消費電力で高性能を実現することができる。
本稿では、イベントベースカメラに接続されたSNNを用いて、ADの重要な問題の一つ、すなわち車と他の物体の分類に直面する。
従来のフレームベースのカメラよりも消費電力が少ないため、dynamic vision sensor(dvs)を使用します。
実験はオフラインで教師付き学習規則に従って行われ、学習したSNNモデルをIntel Loihi Neuromorphic Research Chipにマッピングする。
我々の最良の実験は、loihiチップに移植すると83%に低下する86%のオフライン実装の精度を達成している。
ニューロモルフィックハードウェアの実装は、サンプル毎に最大0.72msのレイテンシを持ち、310mWしか消費しない。
我々の知る限りでは、この研究はニューロモルフィックチップ上でのイベントベースのカー分類器の最初の実装である。
関連論文リスト
- Detection of Fast-Moving Objects with Neuromorphic Hardware [12.323012135924374]
スパイキングニューラルネットワーク(SNN)は、しばしば次世代ニューラルネットワーク(NN)と見なされる。
ニューロモルフィックコンピューティング(NC)とSNNは、しばしば次世代ニューラルネットワーク(NN)と見なされる。
論文 参考訳(メタデータ) (2024-03-15T20:53:10Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Autonomous Driving using Spiking Neural Networks on Dynamic Vision
Sensor Data: A Case Study of Traffic Light Change Detection [0.0]
スパイキングニューラルネットワーク(SNN)は、情報処理と意思決定のための代替モデルを提供する。
自動運転にSNNを用いた最近の研究は主に、簡易なシミュレーション環境における車線維持のような単純なタスクに焦点を当てている。
本研究は,実車上でSNNを使用するための重要なステップであるCARLAシミュレータにおける実写走行シーンについて,SNNについて検討する。
論文 参考訳(メタデータ) (2023-09-27T23:31:30Z) - LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi
Neuromorphic Processor [12.47874622269824]
我々は、イベントベースのカメラ入力を用いて、道路にマークされた車線を検出するための新しいSNNベースのアプローチであるLaneSNNを提案する。
我々は、学習したSNNモデルをIntel Loihi Neuromorphic Research Chipに実装し、マッピングする。
損失関数に対して,重み付き二元交叉エントロピー(WCE)と平均二乗誤差(MSE)の線形合成に基づく新しい手法を開発した。
論文 参考訳(メタデータ) (2022-08-03T14:51:15Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - A Spiking Neural Network Structure Implementing Reinforcement Learning [0.0]
本稿では,SNNの構造について述べる。
本論文で考察したSNN構造は、LIFAT(Leky Integration-and-fire neuron with adapt threshold)モデルの一般化によって記述されたスパイクニューロンを含む。
私の概念は、RLタスク特性に関する非常に一般的な仮定に基づいており、適用性に目に見える制限はありません。
論文 参考訳(メタデータ) (2022-04-09T09:08:10Z) - A Spiking Neural Network for Image Segmentation [3.4998703934432682]
我々は,深層ニューラルネットワーク(ANN)アーキテクチャのU-Netを,Nengoフレームワークを用いたスパイキングニューラルネットワーク(SNN)アーキテクチャに変換する。
レートベースモデルとスパイクベースモデルの両方がトレーニングされ、パフォーマンスとパワーのベンチマークに最適化されている。
Intel Loihiのニューロモルフィックチップのニューロモルフィック実装は、従来のハードウェアよりも2倍エネルギー効率が高い。
論文 参考訳(メタデータ) (2021-06-16T16:23:18Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。