論文の概要: Semi-Sparsity for Smoothing Filters
- arxiv url: http://arxiv.org/abs/2107.00627v1
- Date: Thu, 1 Jul 2021 17:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:42:53.738075
- Title: Semi-Sparsity for Smoothing Filters
- Title(参考訳): 平滑化フィルタの半スパーシビリティ
- Authors: Junqing Huang, Haihui Wang, Xuechao Wang, Michael Ruzhansky
- Abstract要約: 本稿では,新しい疎度誘導フレームワークに基づく半疎度平滑化アルゴリズムを提案する。
我々は、一連の信号/画像処理とコンピュータビジョンアプリケーションに多くの利点を示す。
- 参考スコア(独自算出の注目度): 1.1404527665142667
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose an interesting semi-sparsity smoothing algorithm
based on a novel sparsity-inducing optimization framework. This method is
derived from the multiple observations, that is, semi-sparsity prior knowledge
is more universally applicable, especially in areas where sparsity is not fully
admitted, such as polynomial-smoothing surfaces. We illustrate that this
semi-sparsity can be identified into a generalized $L_0$-norm minimization in
higher-order gradient domains, thereby giving rise to a new ``feature-aware''
filtering method with a powerful simultaneous-fitting ability in both sparse
features (singularities and sharpening edges) and non-sparse regions
(polynomial-smoothing surfaces). Notice that a direct solver is always
unavailable due to the non-convexity and combinatorial nature of $L_0$-norm
minimization. Instead, we solve the model based on an efficient half-quadratic
splitting minimization with fast Fourier transforms (FFTs) for acceleration. We
finally demonstrate its versatility and many benefits to a series of
signal/image processing and computer vision applications.
- Abstract(参考訳): 本稿では,新しいスパーシリティ誘導最適化フレームワークに基づく,興味深い半スパーシリティ平滑化アルゴリズムを提案する。
この方法は、例えば多項式平滑表面のような空間が完全に認められない領域において、半スパーシティ事前知識がより普遍的に適用可能であるという複数の観測から導かれる。
この半分離性は、高次勾配領域における一般化された$l_0$-norm最小化に同定できるため、疎な特徴(特異性と鋭いエッジ)と非疎領域(多項スモーキング面)の両方において、強力な同時フィッティング能力を持つ新しい ‘feature-aware' フィルタリング法が生まれている。
l_0$-ノルム最小化の非凸性と組合せの性質のため、直接解法は常に使用できないことに注意。
代わりに、高速化のために高速フーリエ変換(FFT)を用いた半四分法分割最小化を効率よく行う。
我々は最終的にその汎用性と、一連の信号/画像処理およびコンピュータビジョンアプリケーションに対する多くの利点を実証する。
関連論文リスト
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
本稿では,適応型ガウスPSFを用いて点を問合せできる新しい設計手法を提案する。
理論的に保証されたアンチエイリアスにより、任意のスケールの単一画像の超解像のための新しい手法が確立される。
論文 参考訳(メタデータ) (2023-11-29T14:01:28Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
複数のプロセッサ/ワーカー/クライアントがローカルなデュアルベクトルにアクセス可能なマルチGPU設定において、モノトン変分不等式(VI)問題を考察する。
モノトーンVI問題に対するデファクトアルゴリズムであるExtra-gradientは、通信効率が良くないように設計されている。
そこで本稿では,VI の解法に適した非バイアスで適応的な圧縮手法である量子化一般化外部勾配 (Q-GenX) を提案する。
論文 参考訳(メタデータ) (2023-08-17T21:15:04Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
統計学と機械学習における正規化技術に触発され,補完的な複合化の最小化について検討した。
予測と高い確率で、新しい過剰なリスク境界を提供する。
我々のアルゴリズムはほぼ最適であり、このクラスの問題に対して、新しいより低い複雑性境界によって証明する。
論文 参考訳(メタデータ) (2022-11-03T12:40:24Z) - Faster Projection-Free Augmented Lagrangian Methods via Weak Proximal
Oracle [16.290192687098383]
本稿では,アフィン制約を伴う凸複合最適化問題について考察する。
正確なプロジェクション/近距離計算が難解な高次元アプリケーションにより,テキスト投影のないラグランジアン型拡張手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T12:51:43Z) - Smooth over-parameterized solvers for non-smooth structured optimization [3.756550107432323]
非滑らか性 (non-smoothness) は、空間性、群空間性、低ランクエッジ、鋭いエッジなどの解の構造的制約を符号化する。
我々は、基礎となる非滑らかな最適化問題の非重み付きだが滑らかな過度パラメータ化を運用する。
我々の主な貢献は変数の一部を明示的に最小化することで新しい定式化を定義する変数射影(VarPro)を適用することです。
論文 参考訳(メタデータ) (2022-05-03T09:23:07Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - Smooth Bilevel Programming for Sparse Regularization [5.177947445379688]
反復再重み付き最小二乗法(IRLS)は、機械学習における空間的回帰問題を解くための一般的な手法である。
両レベルスキームが組み合わさって、IRLSの驚くほど再パラメータ化が、いかにスパーシティの上位化を実現するかを示す。
論文 参考訳(メタデータ) (2021-06-02T19:18:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。