SocialAI: Benchmarking Socio-Cognitive Abilities in Deep Reinforcement
Learning Agents
- URL: http://arxiv.org/abs/2107.00956v2
- Date: Tue, 6 Jul 2021 06:42:34 GMT
- Title: SocialAI: Benchmarking Socio-Cognitive Abilities in Deep Reinforcement
Learning Agents
- Authors: Grgur Kova\v{c}, R\'emy Portelas, Katja Hofmann, Pierre-Yves Oudeyer
- Abstract summary: Building embodied autonomous agents capable of participating in social interactions with humans is one of the main challenges in AI.
We argue that aiming towards human-level AI requires a broader set of key social skills.
We present SocialAI, a benchmark to assess the acquisition of social skills of DRL agents.
- Score: 23.719833581321033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building embodied autonomous agents capable of participating in social
interactions with humans is one of the main challenges in AI. Within the Deep
Reinforcement Learning (DRL) field, this objective motivated multiple works on
embodied language use. However, current approaches focus on language as a
communication tool in very simplified and non-diverse social situations: the
"naturalness" of language is reduced to the concept of high vocabulary size and
variability. In this paper, we argue that aiming towards human-level AI
requires a broader set of key social skills: 1) language use in complex and
variable social contexts; 2) beyond language, complex embodied communication in
multimodal settings within constantly evolving social worlds. We explain how
concepts from cognitive sciences could help AI to draw a roadmap towards
human-like intelligence, with a focus on its social dimensions. As a first
step, we propose to expand current research to a broader set of core social
skills. To do this, we present SocialAI, a benchmark to assess the acquisition
of social skills of DRL agents using multiple grid-world environments featuring
other (scripted) social agents. We then study the limits of a recent SOTA DRL
approach when tested on SocialAI and discuss important next steps towards
proficient social agents. Videos and code are available at
https://sites.google.com/view/socialai.
Related papers
- The Call for Socially Aware Language Technologies [94.6762219597438]
We argue that many of these issues share a common core: a lack of awareness of the factors, context, and implications of the social environment in which NLP operates.
We argue that substantial challenges remain for NLP to develop social awareness and that we are just at the beginning of a new era for the field.
arXiv Detail & Related papers (2024-05-03T18:12:39Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - Social Skill Training with Large Language Models [65.40795606463101]
People rely on social skills like conflict resolution to communicate effectively and to thrive in both work and personal life.
This perspective paper identifies social skill barriers to enter specialized fields.
We present a solution that leverages large language models for social skill training via a generic framework.
arXiv Detail & Related papers (2024-04-05T16:29:58Z) - SOTOPIA-$π$: Interactive Learning of Socially Intelligent Language Agents [73.35393511272791]
We propose an interactive learning method, SOTOPIA-$pi$, improving the social intelligence of language agents.
This method leverages behavior cloning and self-reinforcement training on filtered social interaction data according to large language model (LLM) ratings.
arXiv Detail & Related papers (2024-03-13T17:17:48Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and humans.
In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals.
We find that GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills.
arXiv Detail & Related papers (2023-10-18T02:27:01Z) - The SocialAI School: Insights from Developmental Psychology Towards
Artificial Socio-Cultural Agents [27.464382586864254]
We argue that AI research should be informed by psychology and study socio-cognitive abilities enabling to enter a culture too.
We present The SocialAI school - a tool including a customizable parameterized uite of procedurally generated environments.
arXiv Detail & Related papers (2023-07-15T19:05:56Z) - SocialAI 0.1: Towards a Benchmark to Stimulate Research on
Socio-Cognitive Abilities in Deep Reinforcement Learning Agents [23.719833581321033]
Building embodied autonomous agents capable of participating in social interactions with humans is one of the main challenges in AI.
Current approaches focus on language as a communication tool in very simplified and non diverse social situations.
We argue that aiming towards human-level AI requires a broader set of key social skills.
arXiv Detail & Related papers (2021-04-27T14:16:29Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
Social language used by human agents is associated with greater users' responsiveness and task completion.
The model uses a sequence-to-sequence deep learning architecture, extended with a social language understanding element.
Evaluation in terms of content preservation and social language level using both human judgment and automatic linguistic measures shows that the model can generate responses that enable agents to address users' issues in a more socially appropriate way.
arXiv Detail & Related papers (2020-12-29T08:22:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.