論文の概要: Language Identification of Hindi-English tweets using code-mixed BERT
- arxiv url: http://arxiv.org/abs/2107.01202v1
- Date: Fri, 2 Jul 2021 17:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 13:03:25.997705
- Title: Language Identification of Hindi-English tweets using code-mixed BERT
- Title(参考訳): コード混合BERTを用いたヒンディー語ツイートの言語識別
- Authors: Mohd Zeeshan Ansari, M M Sufyan Beg, Tanvir Ahmad, Mohd Jazib Khan,
Ghazali Wasim
- Abstract要約: この研究は、ヒンディー語-英語-ウルドゥー語混成テキストのデータ収集を言語事前学習に利用し、ヒンディー語-英語混成テキストはその後の単語レベルの言語分類に利用している。
その結果、コードミックスデータ上で事前学習された表現は、モノリンガルデータによるより良い結果をもたらすことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language identification of social media text has been an interesting problem
of study in recent years. Social media messages are predominantly in code mixed
in non-English speaking states. Prior knowledge by pre-training contextual
embeddings have shown state of the art results for a range of downstream tasks.
Recently, models such as BERT have shown that using a large amount of unlabeled
data, the pretrained language models are even more beneficial for learning
common language representations. Extensive experiments exploiting transfer
learning and fine-tuning BERT models to identify language on Twitter are
presented in this paper. The work utilizes a data collection of
Hindi-English-Urdu codemixed text for language pre-training and Hindi-English
codemixed for subsequent word-level language classification. The results show
that the representations pre-trained over codemixed data produce better results
by their monolingual counterpart.
- Abstract(参考訳): 近年,ソーシャルメディアのテキストの言語識別は興味深い研究課題となっている。
ソーシャルメディアのメッセージは、主に英語以外の国で混在している。
文脈埋め込みの事前学習による事前知識は、下流タスクにおけるアート結果の状態を示している。
近年、BERTのようなモデルでは、大量のラベルのないデータを使用することで、事前訓練された言語モデルは共通の言語表現を学習するのにさらに有益であることが示されている。
本稿では,移動学習と細調整BERTモデルを用いたTwitter上での言語識別実験について述べる。
この研究は、ヒンディー語-英語-ウルドゥー語 のコード混合テキストのデータ収集を言語事前学習に用い、ヒンディー語-英語 コード混合を後続の単語レベルの言語分類に用いている。
その結果、コードミックスデータ上で事前学習された表現は、モノリンガルデータによるより良い結果をもたらすことがわかった。
関連論文リスト
- Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment [50.27950279695363]
転送性能は、低リソースのターゲット言語が高リソースのソース言語とは異なるスクリプトで書かれている場合、しばしば妨げられる。
本論文は,この問題に対処するために翻訳を用いた最近の研究に触発されて,翻訳に基づくポストプレトレーニングアライメント(PPA)手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T08:59:24Z) - Offensive Language Identification in Transliterated and Code-Mixed
Bangla [29.30985521838655]
本稿では,翻訳とコードミキシングによるテキスト中の攻撃的言語識別について検討する。
TB-OLID(TB-OLID)は,5000のコメントを手動で書き起こした,バングラの攻撃的言語データセットである。
我々はTB-OLIDで機械学習モデルを訓練し、微調整を行い、このデータセットで結果を評価する。
論文 参考訳(メタデータ) (2023-11-25T13:27:22Z) - Mixed-Distil-BERT: Code-mixed Language Modeling for Bangla, English, and Hindi [0.0]
我々は、バングラ語、英語、ヒンディー語で事前訓練された多言語モデルTri-Distil-BERTと、コードミックスデータに基づいて微調整されたMixed-Distil-BERTを紹介する。
我々の2層事前学習アプローチは、多言語およびコード混在言語理解のための効率的な代替手段を提供する。
論文 参考訳(メタデータ) (2023-09-19T02:59:41Z) - Leveraging Language Identification to Enhance Code-Mixed Text
Classification [0.7340017786387767]
既存のディープラーニングモデルは、コード混合テキストの暗黙の言語情報を活用できない。
本研究の目的は,低リソースのCode-Mixed Hindi- Englishデータセット上でのBERTモデルの性能向上である。
論文 参考訳(メタデータ) (2023-06-08T06:43:10Z) - Comparative Study of Pre-Trained BERT Models for Code-Mixed
Hindi-English Data [0.7874708385247353]
コードミックス(Code Mixed)とは、複数の言語を同一のテキストで使用すること。
本研究では、低リソースのヒンディー語-英語のコード混合言語に焦点を当てる。
我々は,HingBERTに基づくモデルを用いて,各データセットの最先端結果について報告する。
論文 参考訳(メタデータ) (2023-05-25T05:10:28Z) - Prompting Multilingual Large Language Models to Generate Code-Mixed
Texts: The Case of South East Asian Languages [47.78634360870564]
東南アジア7言語(SEA)のコードミキシングデータ生成のための多言語モデルの構築について検討する。
BLOOMZのような多言語学習モデルでは、異なる言語からフレーズや節でテキストを生成できないことが判明した。
ChatGPTは、コード混合テキストの生成において矛盾する機能を示しており、そのパフォーマンスはプロンプトテンプレートと言語ペアリングによって異なる。
論文 参考訳(メタデータ) (2023-03-23T18:16:30Z) - L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and
BERT Language Models [1.14219428942199]
L3Cube-HingCorpusは,ローマ文字で最初の大規模実ヒンディー語混成データである。
GLUECoSベンチマークから,コード混合感情分析,POSタグ付け,NER,LIDなどの下流タスクに対するBERTモデルの有効性を示す。
論文 参考訳(メタデータ) (2022-04-18T16:49:59Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - It's not Greek to mBERT: Inducing Word-Level Translations from
Multilingual BERT [54.84185432755821]
mBERT (multilingual BERT) は、言語間での移動を可能にするリッチな言語間表現を学習する。
我々はmBERTに埋め込まれた単語レベルの翻訳情報について検討し、微調整なしで優れた翻訳能力を示す2つの簡単な方法を提案する。
論文 参考訳(メタデータ) (2020-10-16T09:49:32Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。