Sibling Regression for Generalized Linear Models
- URL: http://arxiv.org/abs/2107.01338v2
- Date: Wed, 7 Jul 2021 15:37:01 GMT
- Title: Sibling Regression for Generalized Linear Models
- Authors: Shiv Shankar, Daniel Sheldon
- Abstract summary: Field observations form the basis of many scientific studies, especially in ecological and social sciences.
Despite efforts to conduct such surveys in a standardized way, observations can be prone to systematic measurement errors.
Existing non-parametric techniques for correcting such errors assume linear additive noise models.
We present an approach based on residual functions to address this limitation.
- Score: 22.16690904610619
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Field observations form the basis of many scientific studies, especially in
ecological and social sciences. Despite efforts to conduct such surveys in a
standardized way, observations can be prone to systematic measurement errors.
The removal of systematic variability introduced by the observation process, if
possible, can greatly increase the value of this data. Existing non-parametric
techniques for correcting such errors assume linear additive noise models. This
leads to biased estimates when applied to generalized linear models (GLM). We
present an approach based on residual functions to address this limitation. We
then demonstrate its effectiveness on synthetic data and show it reduces
systematic detection variability in moth surveys.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - Modeling High-Dimensional Data with Unknown Cut Points: A Fusion
Penalized Logistic Threshold Regression [2.520538806201793]
In traditional logistic regression models, the link function is often assumed to be linear and continuous in predictors.
We consider a threshold model that all continuous features are discretized into ordinal levels, which further determine the binary responses.
We find the lasso model is well suited in the problem of early detection and prediction for chronic disease like diabetes.
arXiv Detail & Related papers (2022-02-17T04:16:40Z) - Harmless interpolation in regression and classification with structured
features [21.064512161584872]
Overparametrized neural networks tend to perfectly fit noisy training data yet generalize well on test data.
We present a general and flexible framework for upper bounding regression and classification risk in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-11-09T15:12:26Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Asymptotics of Ridge Regression in Convolutional Models [26.910291664252973]
We derive exact formulae for estimation error of ridge estimators that hold in a certain high-dimensional regime.
We show the double descent phenomenon in our experiments for convolutional models and show that our theoretical results match the experiments.
arXiv Detail & Related papers (2021-03-08T05:56:43Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Three-quarter Sibling Regression for Denoising Observational Data [24.91564825369108]
'Half-sibling regression' can detect and correct for systematic errors in measurements of multiple independent random variables.
It does not apply to many situations, including modeling of species counts that are controlled by common causes.
We present a technique called 'three-quarter sibling regression' to partially overcome this limitation.
arXiv Detail & Related papers (2020-12-31T21:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.