論文の概要: Cluster Representatives Selection in Non-Metric Spaces for Nearest
Prototype Classification
- arxiv url: http://arxiv.org/abs/2107.01345v1
- Date: Sat, 3 Jul 2021 04:51:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 10:35:53.205412
- Title: Cluster Representatives Selection in Non-Metric Spaces for Nearest
Prototype Classification
- Title(参考訳): 最寄りプロトタイプ分類のための非計量空間におけるクラスター代表の選択
- Authors: Jaroslav Hlav\'a\v{c}, Martin Kopp, Jan Kohout
- Abstract要約: 本稿では,オブジェクトの小さいが代表的なサブセットをクラスタのプロトタイプとして選択する新しい手法であるCRSを提案する。
NN-Descentアルゴリズムにより生成された各クラスタの類似度グラフ表現を活用することにより、代表者のメモリと計算効率のよい選択が可能となる。
CRSはグラフベースのアプローチのため、任意の計量空間や非計量空間で使用することができる。
- 参考スコア(独自算出の注目度): 4.176752121302988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nearest prototype classification is a less computationally intensive
replacement for the $k$-NN method, especially when large datasets are
considered. In metric spaces, centroids are often used as prototypes to
represent whole clusters. The selection of cluster prototypes in non-metric
spaces is more challenging as the idea of computing centroids is not directly
applicable.
In this paper, we present CRS, a novel method for selecting a small yet
representative subset of objects as a cluster prototype. Memory and
computationally efficient selection of representatives is enabled by leveraging
the similarity graph representation of each cluster created by the NN-Descent
algorithm. CRS can be used in an arbitrary metric or non-metric space because
of the graph-based approach, which requires only a pairwise similarity measure.
As we demonstrate in the experimental evaluation, our method outperforms the
state of the art techniques on multiple datasets from different domains.
- Abstract(参考訳): 最も近いプロトタイプ分類は、特に大規模なデータセットを考慮に入れた場合、$k$-NN法の計算集約的な置き換えである。
計量空間では、セントロイドはクラスター全体を表すプロトタイプとしてしばしば用いられる。
非計量空間におけるクラスタプロトタイプの選択は、セントロイドの計算が直接適用されないため、より難しい。
本稿では,オブジェクトの小さいが代表的なサブセットをクラスタのプロトタイプとして選択する新しい手法であるCRSを提案する。
nn-descentアルゴリズムによって作成された各クラスタの類似性グラフ表現を利用して、メモリと計算効率のよい代表者選択を可能にする。
CRSはグラフベースのアプローチのため、任意の計量空間や非計量空間で使用することができる。
実験で示すように,本手法は異なる領域の複数のデータセット上で,技術技術の現状よりも優れている。
関連論文リスト
- MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
NCCは、ドメイン間数ショットの分類において、少数ショットの分類が可能なメートル法空間を構築するために表現を学ぶことを目的としている。
本稿では,異なるクラスから得られた2つの標本の NCC 学習表現に高い類似性があることを見出した。
ラベル付きデータによって示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、最適化されたカーネル依存(MOKD)を最大化する二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T05:59:52Z) - Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery [23.359450657842686]
Generalized Class Discovery (GCD) はラベル付きデータから学んだ知識に基づいてラベルを部分的にラベル付きデータに動的に割り当てることを目的としている。
本稿では,学習可能な潜在的なプロトタイプを導入し,クラスタプロトタイプを拡張する適応型探索機構を提案する。
我々の手法は、スタンフォード・カーズ・データセットの9.7%の差で、最も近い競合相手を上回っている。
論文 参考訳(メタデータ) (2024-04-13T12:41:40Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Refining a $k$-nearest neighbor graph for a computationally efficient
spectral clustering [1.5469452301122175]
近似スペクトルクラスタリング(ASC)はサンプリングまたは量子化を使用してデータ代表を選択する。
我々は、データポイントを保持し、エッジ数を積極的に削減する、$k$-nearest 隣のグラフの洗練されたバージョンを提案する。
ASC法と比較して,提案手法はエッジの大幅な削減に拘わらず一貫した性能を示した。
論文 参考訳(メタデータ) (2023-02-22T11:31:32Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
K-meansアルゴリズムの初期クラスタ選択を改善するための新しい手法を提案する。
Convex Hullアルゴリズムは、最初の2つのセントロイドの計算を容易にし、残りの2つは、以前選択された中心からの距離に応じて選択される。
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data。
論文 参考訳(メタデータ) (2022-10-18T00:58:50Z) - IPD:An Incremental Prototype based DBSCAN for large-scale data with
cluster representatives [2.864550757598006]
大規模データに対して任意の形状のクラスタを識別するインクリメンタルプロトタイプベースDBSCAN (IPD) アルゴリズムを提案する。
本稿では,大規模データに対して任意の形状のクラスタを識別するインクリメンタルプロトタイプベースDBSCAN (IPD) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-16T05:47:31Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
クラスタリングアルゴリズムは、ラベルなしデータのパターンを検出する主要な分析手法の1つである。
本稿では,人間のクラスタリングデータに着想を得た,2次元空間におけるクラスタリングポイントの全く異なる方法を提案する。
私たちのアプローチであるVisual Clusteringは、従来のクラスタリングアルゴリズムよりもいくつかのアドバンテージを持っています。
論文 参考訳(メタデータ) (2021-10-06T06:19:30Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
本稿では,未知数の幾何学的モデル,例えばホモグラフィーを求めるアルゴリズムを提案する。
複数の幾何モデルを用いることで精度が向上するアプリケーションをいくつか提示する。
これには、複数の一般化されたホモグラフからのポーズ推定、高速移動物体の軌道推定が含まれる。
論文 参考訳(メタデータ) (2021-03-25T14:35:07Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。