論文の概要: A Comparison of the Delta Method and the Bootstrap in Deep Learning
Classification
- arxiv url: http://arxiv.org/abs/2107.01606v1
- Date: Sun, 4 Jul 2021 12:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 15:15:46.726154
- Title: A Comparison of the Delta Method and the Bootstrap in Deep Learning
Classification
- Title(参考訳): ディープラーニング分類におけるdelta法とbootstrap法の比較
- Authors: Geir K. Nilsen and Antonella Z. Munthe-Kaas and Hans J. Skaug and
Morten Brun
- Abstract要約: この2つの方法から得られた定量的な予測的てんかん不確実性レベルの間には,強い線形関係があることが示されている。
Delta法はBootstrapの5倍の時間を短縮できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We validate the recently introduced deep learning classification adapted
Delta method by a comparison with the classical Bootstrap. We show that there
is a strong linear relationship between the quantified predictive epistemic
uncertainty levels obtained from the two methods when applied on two
LeNet-based neural network classifiers using the MNIST and CIFAR-10 datasets.
Furthermore, we demonstrate that the Delta method offers a five times
computation time reduction compared to the Bootstrap.
- Abstract(参考訳): 本稿では,最近導入されたdeep learning classificationadapted delta法を,古典ブートストラップとの比較により検証する。
mnist と cifar-10 のデータセットを用いた2つの lenet ベースのニューラルネットワーク分類器に適用した場合,2つの手法から得られた数値化された予測認識の不確実性レベルの間に強い線形関係が存在することを示す。
さらに,Delta法はBootstrapに比べて5倍の計算時間を短縮できることを示した。
関連論文リスト
- Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
本稿では,クラス増分学習シナリオに特化して,ベイズ学習駆動型コントラスト損失(BLCL)を持つプロトタイプネットワークを提案する。
提案手法は,ベイズ学習手法を用いて,クロスエントロピーとコントラスト損失関数のバランスを動的に適用する。
論文 参考訳(メタデータ) (2024-05-17T19:49:02Z) - AICSD: Adaptive Inter-Class Similarity Distillation for Semantic
Segmentation [12.92102548320001]
本稿では,知識蒸留を目的としたICSD (Inter-Class similarity Distillation) を提案する。
提案手法は,教師ネットワークから生徒ネットワークへの高次関係を,ネットワーク出力から各クラス毎のクラス内分布を独立に計算することによって伝達する。
セマンティックセグメンテーションのためのよく知られた2つのデータセットであるCityscapesとPascal VOC 2012の実験により、提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2023-08-08T13:17:20Z) - Incorporating the Barzilai-Borwein Adaptive Step Size into Sugradient
Methods for Deep Network Training [3.8762085568003406]
準ニュートン法に基づくセカント方程式に2点近似を用いて学習率を適用する。
本手法は,広く利用可能なデータセットの標準例ネットワークアーキテクチャを用いて評価し,文献の他の代替案と比較する。
論文 参考訳(メタデータ) (2022-05-27T02:12:59Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL)フレームワークは、双方向最適化戦略とオンラインアンサンブル分類器を組み合わせたフレームワークである。
概念ドリフトが検出されると、BODLアルゴリズムはバイレベル最適化によりモデルパラメータを適応的に更新し、大きなドリフトを回避し、正の転送を促進する。
論文 参考訳(メタデータ) (2022-01-25T11:05:51Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Learning Gaussian Graphical Models with Latent Confounders [74.72998362041088]
我々は、グラフィカルモデルにおける推論のための2つの戦略を、潜伏した共同創設者と比較し、対比する。
これら2つのアプローチは、類似した目標を持っているが、それらは共起に関する異なる仮定によって動機付けられている。
これら2つのアプローチの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-14T00:53:03Z) - Learning Robust Variational Information Bottleneck with Reference [12.743882133781598]
変動情報ボトルネック(VIB)を訓練する新しいアプローチを提案し、その堅牢性を敵対的な摂動に改善する。
事前に訓練された参照ニューラルネットワークから得られるソフトラベルを用いて、トレーニングフェーズの分類クラス情報を洗練します。
論文 参考訳(メタデータ) (2021-04-29T14:46:09Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - COLAM: Co-Learning of Deep Neural Networks and Soft Labels via
Alternating Minimization [60.07531696857743]
2つの目的の交互最小化によるDNNとソフトラベルの共学習
本稿では,DNNとソフトラベルを相互に学習するCOLAMフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-26T17:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。