論文の概要: Survey: Leakage and Privacy at Inference Time
- arxiv url: http://arxiv.org/abs/2107.01614v1
- Date: Sun, 4 Jul 2021 12:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 14:54:41.502455
- Title: Survey: Leakage and Privacy at Inference Time
- Title(参考訳): 調査: 推測時の漏洩とプライバシ
- Authors: Marija Jegorova, Chaitanya Kaul, Charlie Mayor, Alison Q. O'Neil,
Alexander Weir, Roderick Murray-Smith, and Sotirios A. Tsaftaris
- Abstract要約: 公開されている機械学習(ML)モデルからのデータの漏洩は、ますます重要になっている分野である。
公開モデルの最も可能性の高いシナリオとして、推論時のリークに注目します。
本稿では,不随意・不随意の漏洩,防御,そして現在利用可能な評価指標と応用にまたがる分類法を提案する。
- 参考スコア(独自算出の注目度): 59.957056214792665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leakage of data from publicly available Machine Learning (ML) models is an
area of growing significance as commercial and government applications of ML
can draw on multiple sources of data, potentially including users' and clients'
sensitive data. We provide a comprehensive survey of contemporary advances on
several fronts, covering involuntary data leakage which is natural to ML
models, potential malevolent leakage which is caused by privacy attacks, and
currently available defence mechanisms. We focus on inference-time leakage, as
the most likely scenario for publicly available models. We first discuss what
leakage is in the context of different data, tasks, and model architectures. We
then propose a taxonomy across involuntary and malevolent leakage, available
defences, followed by the currently available assessment metrics and
applications. We conclude with outstanding challenges and open questions,
outlining some promising directions for future research.
- Abstract(参考訳): MLの商用および政府のアプリケーションは、ユーザやクライアントの機密データを含む複数のデータソースに描画できるため、公開されている機械学習(ML)モデルからのデータの漏洩は、重要性が増している分野である。
本稿では,MLモデルに固有な不随意データ漏洩,プライバシ攻撃による潜在的な万能リーク,現在利用可能な防御機構など,いくつかの面での現代的進歩を包括的に調査する。
公開モデルの最も可能性の高いシナリオとして,私たちは推論時間リークに注目しています。
まず、異なるデータ、タスク、モデルアーキテクチャのコンテキストにおける漏洩について論じる。
次に,不随意および不利な漏洩,利用可能な防御,および現在入手可能なアセスメント指標と応用に関する分類法を提案する。
今後の研究に向けた有望な方向性を概説し、優れた課題とオープンな質問で締めくくります。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Where have you been? A Study of Privacy Risk for Point-of-Interest Recommendation [20.526071564917274]
モビリティデータは、ロケーションベースサービス(LBS)のための機械学習(ML)モデルを構築するために使用できる。
しかし、この種のデータには、自宅や職場など、ユーザの身元に関する機密情報が含まれている可能性があるため、プライバシー漏洩のリスクが伴う。
我々は,POI(point-of-interest)レコメンデーションモデルに適したデータ抽出とメンバシップ推論攻撃を含むプライバシ攻撃スイートを設計する。
論文 参考訳(メタデータ) (2023-10-28T06:17:52Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
我々は要約作業に焦点をあて、会員推測(MI)攻撃について調査する。
テキストの類似性や文書修正に対するモデルの抵抗をMI信号として活用する。
我々は、MI攻撃から保護するための要約モデルの訓練と、プライバシとユーティリティの本質的にのトレードオフについて議論する。
論文 参考訳(メタデータ) (2023-10-20T05:44:39Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - A Blackbox Model Is All You Need to Breach Privacy: Smart Grid
Forecasting Models as a Use Case [0.7714988183435832]
LSTMモデルへのブラックボックスアクセスは、データ自体へのアクセスに匹敵する膨大な量の情報を明らかにすることができることを示す。
これは、データと同じレベルで予測モデルを保護することの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-04T11:07:37Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - Privacy in Deep Learning: A Survey [16.278779275923448]
多くの分野でのディープラーニングの継続的な進歩は、プロダクションシステムにDeep Neural Networks(DNN)の採用につながっている。
大規模なデータセットと高い計算能力がこれらの進歩の主な貢献者である。
このデータはさまざまな脆弱性によって誤用または漏洩される可能性があるため、プライバシー上の深刻な懸念が生じる。
論文 参考訳(メタデータ) (2020-04-25T23:47:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。