論文の概要: Tackling COVID-19 Infodemic using Deep Learning
- arxiv url: http://arxiv.org/abs/2107.02012v1
- Date: Thu, 1 Jul 2021 11:07:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 15:20:28.551586
- Title: Tackling COVID-19 Infodemic using Deep Learning
- Title(参考訳): 深層学習を用いた新型コロナウイルス情報処理
- Authors: Prathmesh Pathwar, Simran Gill
- Abstract要約: オンラインメディア上で偽ニュースを検出し、分類し、新型コロナウイルスや新型コロナウイルスに関連する偽情報を検出する。
データセットには偽の投稿、記事、ニュースがポリティファクトのような事実チェックサイトから集められ、実際のツイートは確認済みのTwitterハンドルから取られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Humanity is battling one of the most deleterious virus in modern history, the
COVID-19 pandemic, but along with the pandemic there's an infodemic permeating
the pupil and society with misinformation which exacerbates the current malady.
We try to detect and classify fake news on online media to detect fake
information relating to COVID-19 and coronavirus. The dataset contained fake
posts, articles and news gathered from fact checking websites like politifact
whereas real tweets were taken from verified twitter handles. We incorporated
multiple conventional classification techniques like Naive Bayes, KNN, Gradient
Boost and Random Forest along with Deep learning approaches, specifically CNN,
RNN, DNN and the ensemble model RMDL. We analyzed these approaches with two
feature extraction techniques, TF-IDF and GloVe Word Embeddings which would
provide deeper insights into the dataset containing COVID-19 info on online
media.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミック(パンデミック)では、生徒や社会に誤った情報を流し込み、現在の病気を悪化させている。
オンラインメディア上で偽ニュースを検出し、分類し、新型コロナウイルスや新型コロナウイルスに関連する偽情報を検出する。
データセットには偽の投稿、記事、ニュースがポリティファクトのような事実チェックサイトから集められ、実際のツイートは確認済みのTwitterハンドルから取られた。
本研究では,Naive Bayes, KNN, Gradient Boost, Random Forestなどの従来の分類手法と,CNN, RNN, DNN, およびアンサンブルモデルRMDLを併用した。
これらの手法をTF-IDFとGloVe Word Embeddingsという2つの特徴抽出手法を用いて分析し、オンラインメディア上でのCOVID-19情報を含むデータセットについてより深い知見を提供する。
関連論文リスト
- Machine Learning-based Automatic Annotation and Detection of COVID-19
Fake News [8.020736472947581]
新型コロナウイルス(COVID-19)は世界のあらゆる地域に影響を与えるが、感染の誤報はウイルスよりも速く移動した。
既存の作業は、拡散の触媒として働くボットの存在を無視する。
そこで本稿では,Twitterデータセット上で事実確認文をラベル付けする手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T13:55:59Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - Detection of fake news on CoViD-19 on Web Search Engines [0.0]
中国が新型ウイルスの最初の症例(SARS-CoV-2)を報告した後、信頼性が低く、正確な情報がウイルス自体よりも早く拡散し始めた。
本研究は,検索エンジンを経由するテキスト情報を取り込んで解析することにより,誤用や偽コンテンツの検出を目標としている。
論文 参考訳(メタデータ) (2021-03-22T13:07:26Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - TIB's Visual Analytics Group at MediaEval '20: Detecting Fake News on
Corona Virus and 5G Conspiracy [9.66022279280394]
ソーシャルメディア上のフェイクニュースは、一般大衆の本当のニュースの話題に悪影響を及ぼすため、研究の話題となっている。
MediaEval 2020のFakeNewsタスクは、誤情報を含むツイートを自動的に検出するチャレンジを作成することで、この問題に対処する。
BERT埋め込みと浅いニューラルネットワークを用いて、テキストのみを用いてツイートを分類する簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2021-01-10T11:52:17Z) - Transformer based Automatic COVID-19 Fake News Detection System [9.23545668304066]
新型コロナウイルス(COVID-19)のパンデミックでは、誤報が特に多い。
新型コロナウイルスのパンデミックに関するソーシャルメディア上で共有される情報の信頼性を分析する手法を報告する。
テストセットでは0.9855 f1スコアを獲得し,160チーム中5位にランクインした。
論文 参考訳(メタデータ) (2021-01-01T06:49:27Z) - Two Stage Transformer Model for COVID-19 Fake News Detection and Fact
Checking [0.3441021278275805]
我々は、自然言語処理のための機械学習モデルの状態を用いて、新型コロナウイルスの偽ニュース検出のための2段階の自動パイプラインを開発する。
最初のモデルは、新型コロナウイルス(COVID-19)の特定のクレームに関するユーザーのクレームに関する最も関連性の高い事実を検索する、新しい事実チェックアルゴリズムを活用する。
第2のモデルは、クレームと、手動でキュレートされたCOVID-19データセットから取得した真事実の間のテキストの関連性を計算することによって、クレームの真理レベルを検証する。
論文 参考訳(メタデータ) (2020-11-26T11:50:45Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Misinformation Has High Perplexity [55.47422012881148]
疑似クレームを教師なしの方法でデバンクするために, 難易度を活用することを提案する。
まず,これらの主張に類似した文に基づいて,科学的およびニュースソースから信頼性のある証拠を抽出する。
第2に,抽出したエビデンスを言語モデルにプライマリし,難易度スコアに基づいて与えられたクレームの正当性を評価する。
論文 参考訳(メタデータ) (2020-06-08T15:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。