論文の概要: Machine Learning Explanations to Prevent Overtrust in Fake News
Detection
- arxiv url: http://arxiv.org/abs/2007.12358v2
- Date: Mon, 27 Jul 2020 03:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 07:06:43.282728
- Title: Machine Learning Explanations to Prevent Overtrust in Fake News
Detection
- Title(参考訳): 偽ニュース検出における過信防止のための機械学習説明
- Authors: Sina Mohseni, Fan Yang, Shiva Pentyala, Mengnan Du, Yi Liu, Nic
Lupfer, Xia Hu, Shuiwang Ji, Eric Ragan
- Abstract要約: 本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
- 参考スコア(独自算出の注目度): 64.46876057393703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combating fake news and misinformation propagation is a challenging task in
the post-truth era. News feed and search algorithms could potentially lead to
unintentional large-scale propagation of false and fabricated information with
users being exposed to algorithmically selected false content. Our research
investigates the effects of an Explainable AI assistant embedded in news review
platforms for combating the propagation of fake news. We design a news
reviewing and sharing interface, create a dataset of news stories, and train
four interpretable fake news detection algorithms to study the effects of
algorithmic transparency on end-users. We present evaluation results and
analysis from multiple controlled crowdsourced studies. For a deeper
understanding of Explainable AI systems, we discuss interactions between user
engagement, mental model, trust, and performance measures in the process of
explaining. The study results indicate that explanations helped participants to
build appropriate mental models of the intelligent assistants in different
conditions and adjust their trust accordingly for model limitations.
- Abstract(参考訳): 偽ニュースや誤情報伝播の議論は、ポストトルース時代には難しい課題だ。
ニュースフィードと検索アルゴリズムは、ユーザーがアルゴリズムによって選択された偽のコンテンツに露出することで、意図しない大規模な偽情報伝達につながる可能性がある。
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討した。
ニュースレビューと共有インターフェースを設計し,ニュース記事のデータセットを作成し,4つの解釈可能な偽ニュース検出アルゴリズムをトレーニングし,アルゴリズムの透明性がエンドユーザに与える影響について検討する。
複数のクラウドソーシング研究から評価結果と分析を行った。
説明可能なaiシステムのより深い理解のために、説明のプロセスにおいて、ユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス指標の相互作用について論じる。
分析の結果,知的アシスタントの適切なメンタルモデルの構築と,モデルの制約に応じて信頼度を調整するのに,説明が役立ったことが示唆された。
関連論文リスト
- Impact of Fake News on Social Media Towards Public Users of Different Age Groups [0.0]
本研究では,偽ニュースがソーシャルメディア利用者にどのような影響を及ぼすかを検討した。
偽ニュースの識別・分類における機械学習モデルの有効性について検討した。
論文 参考訳(メタデータ) (2024-11-08T15:32:20Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
フェイクニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入する。
MPSCは、深層学習技術を用いて、文自体とその関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
論文 参考訳(メタデータ) (2022-06-01T21:25:21Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Combining Machine Learning with Knowledge Engineering to detect Fake
News in Social Networks-a survey [0.7120858995754653]
ニュースメディアやソーシャルメディアでは、情報は高速に拡散されるが、正確性がないため、検出メカニズムは偽ニュースの拡散に対処するのに十分な速さでニュースを予測することができる。
本稿では,フェイクニュースとは何か,フェイクニュースの重要性,さまざまな領域におけるフェイクニュースの全体的影響,ソーシャルメディア上でフェイクニュースを検出するさまざまな方法,問題を克服する上で有効な既存の検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-20T07:43:15Z) - Automated Evidence Collection for Fake News Detection [11.324403127916877]
本稿では,現在行われている偽ニュース検出手法を改良した新しい手法を提案する。
提案手法は,Web記事からエビデンスを抽出し,エビデンスとして扱うための適切なテキストを選択する。
我々の実験は、機械学習とディープラーニングに基づく手法の両方を用いて、我々のアプローチを広範囲に評価するのに役立つ。
論文 参考訳(メタデータ) (2021-12-13T09:38:41Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
我々は、44名のレイト参加者に、ニュース記事を含む投稿を含むソーシャルメディアフィードをさりげなく読み取らせるという、視線追跡研究を提示した。
第2回では,参加者に対して,これらの記事の真偽を判断するよう求めた。
また、同様のシナリオを用いたフォローアップ定性的な研究についても述べるが、今回は7人の専門家によるフェイクニュースアノテータを用いた。
論文 参考訳(メタデータ) (2021-09-26T08:11:17Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - FairCVtest Demo: Understanding Bias in Multimodal Learning with a
Testbed in Fair Automatic Recruitment [79.23531577235887]
このデモは、非構造化データから機密情報を抽出する採用ツールの背後にある人工知能(AI)の能力を示しています。
また、このデモには差別認識学習のための新しいアルゴリズムが含まれており、マルチモーダルAIフレームワークの機密情報を排除している。
論文 参考訳(メタデータ) (2020-09-12T17:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。