論文の概要: Understanding the Security of Deepfake Detection
- arxiv url: http://arxiv.org/abs/2107.02045v1
- Date: Mon, 5 Jul 2021 14:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 15:06:26.755254
- Title: Understanding the Security of Deepfake Detection
- Title(参考訳): ディープフェイク検出の安全性の理解
- Authors: Xiaoyu Cao and Neil Zhenqiang Gong
- Abstract要約: 本研究では,最先端のディープフェイク検出手法の対向的設定における安全性について検討する。
FaceForensics++やFacebook Deepfake Detection Challengeなど、大規模な公開ディープフェイクデータソースを2つ使用しています。
本研究は, 対戦環境におけるディープフェイク検出手法のセキュリティ上の制約を明らかにした。
- 参考スコア(独自算出の注目度): 23.118012417901078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfakes pose growing challenges to the trust of information on the
Internet. Therefore,detecting deepfakes has attracted increasing attentions
from both academia and industry. State-of-the-art deepfake detection methods
consist of two key components, i.e., face extractor and face classifier, which
extract the face region in an image and classify it to be real/fake,
respectively. Existing studies mainly focused on improving the detection
performance in non-adversarial settings, leaving security of deepfake detection
in adversarial settings largely unexplored. In this work, we aim to bridge the
gap. In particular, we perform a systematic measurement study to understand the
security of the state-of-the-art deepfake detection methods in adversarial
settings. We use two large-scale public deepfakes data sources including
FaceForensics++ and Facebook Deepfake Detection Challenge, where the deepfakes
are fake face images; and we train state-of-the-art deepfake detection methods.
These detection methods can achieve 0.94--0.99 accuracies in non-adversarial
settings on these datasets. However, our measurement results uncover multiple
security limitations of the deepfake detection methods in adversarial settings.
First, we find that an attacker can evade a face extractor, i.e., the face
extractor fails to extract the correct face regions, via adding small Gaussian
noise to its deepfake images. Second, we find that a face classifier trained
using deepfakes generated by one method cannot detect deepfakes generated by
another method, i.e., an attacker can evade detection via generating deepfakes
using a new method. Third, we find that an attacker can leverage backdoor
attacks developed by the adversarial machine learning community to evade a face
classifier. Our results highlight that deepfake detection should consider the
adversarial nature of the problem.
- Abstract(参考訳): ディープフェイクはインターネット上の情報の信頼にますます困難をもたらしている。
そのため、ディープフェイクの検出は学術と産業の両方から注目を集めている。
最先端のディープフェイク検出方法は、顔抽出器と顔分類器の2つのキーコンポーネントから構成され、画像中の顔領域を抽出し、それを実物/偽物に分類する。
既存の研究では、主に非敵の設定における検出性能の改善に焦点が当てられ、敵の設定におけるディープフェイク検出の安全性はほとんど探索されていない。
この作業では、ギャップを埋めることを目指しています。
特に,攻撃環境における最先端のディープフェイク検出手法の安全性を理解するために,体系的な測定を行った。
我々は、faceforensics++とfacebook deepfake detection challengeを含む2つの大規模な公開ディープフェイクデータソースを使用し、ディープフェイクは偽の顔画像であり、最先端のディープフェイク検出方法をトレーニングする。
これらの検出方法は、これらのデータセットの非競合設定において 0.94--0.99 accuracies を達成することができる。
しかし,本測定の結果から,ディープフェイク検出手法の複数のセキュリティ上の制約が明らかとなった。
まず,ディープフェイク画像にガウス雑音を付加することにより,顔抽出器,すなわち顔抽出器が適切な顔領域を抽出できないことを発見した。
第二に、あるメソッドで生成されたディープフェイクを用いて訓練された顔分類器は、別のメソッドで生成されたディープフェイクを検出することができない。
第三に、攻撃者は、敵の機械学習コミュニティが開発したバックドア攻撃を利用して、顔分類器を避けることができる。
以上の結果から,ディープフェイク検出は問題の性質を考慮すべきであることが示唆された。
関連論文リスト
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Shaking the Fake: Detecting Deepfake Videos in Real Time via Active Probes [3.6308756891251392]
生成AIの一種であるリアルタイムディープフェイク(Real-time Deepfake)は、ビデオ内の既存のコンテンツ(例えば、顔を別のものと交換する)を「生成する」ことができる。
金融詐欺や政治的誤報など、悪意ある目的のためにディープフェイクビデオを作るのに誤用されている。
本研究では,物理干渉に適応できないディープフェイクモデルを利用した新しいリアルタイムディープフェイク検出手法であるSFakeを提案する。
論文 参考訳(メタデータ) (2024-09-17T04:58:30Z) - Adversarial Magnification to Deceive Deepfake Detection through Super Resolution [9.372782789857803]
本稿では, 深度検出における対角攻撃の可能性として, 超解像法の適用について検討する。
画像の視覚的外観におけるこれらの手法による最小限の変化は、ディープフェイク検出システムの性能に大きな影響を及ぼすことを示す。
そこで我々は,超解像を高速かつブラックボックスとして,偽画像のキャモフラージュやプリスタン画像の偽アラーム生成に有効な手法として,新しい攻撃法を提案する。
論文 参考訳(メタデータ) (2024-07-02T21:17:36Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Turn Fake into Real: Adversarial Head Turn Attacks Against Deepfake
Detection [58.1263969438364]
本稿では,3次元対向顔視によるディープフェイク検出器に対する最初の試みとして,対向頭部旋回(AdvHeat)を提案する。
実験では、現実的なブラックボックスシナリオにおいて、様々な検出器のAdvHeatに対する脆弱性を検証する。
さらなる分析により、AdvHeatは、クロス検出器転送性と防御に対する堅牢性の両方に対する従来の攻撃よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-03T07:01:34Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
本研究は,ディープフェイク検出器の一般化性に関する最初の実証的研究である。
本研究では,6つのディープフェイクデータセット,5つのディープフェイク画像検出手法,および2つのモデル拡張アプローチを用いた。
検出器は, 合成法に特有の不要な特性を学習し, 識別的特徴の抽出に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-08-08T10:30:34Z) - Deepfake Detection for Facial Images with Facemasks [17.238556058316412]
フェイスマスクを用いたディープフェイクにおける最先端のディープフェイク検出モデルの性能を徹底的に評価した。
テマズクディープフェイク検出:顔パタンカードフェイスクロップの2つの手法を提案する。
論文 参考訳(メタデータ) (2022-02-23T09:01:27Z) - Multi-attentional Deepfake Detection [79.80308897734491]
ディープフェイクによる顔の偽造はインターネットに広まり、深刻な社会的懸念を引き起こしている。
新たなマルチアテンテーショナルディープフェイク検出ネットワークを提案する。
具体的には,1)ネットワークを異なる局所的部分へ配置するための複数の空間的注意ヘッド,2)浅い特徴の微妙なアーティファクトをズームするテクスチャ的特徴拡張ブロック,3)低レベルなテクスチャ特徴と高レベルなセマンティクス特徴をアグリゲートする,の3つの構成要素からなる。
論文 参考訳(メタデータ) (2021-03-03T13:56:14Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z) - Identity-Driven DeepFake Detection [91.0504621868628]
アイデンティティ駆動のDeepFake Detectionは、被疑者画像/ビデオとターゲットのアイデンティティ情報を入力する。
被疑者画像・映像の同一性は対象人物と同一かという判断を出力する。
本稿では,新たな研究のベースラインとして,簡単な識別ベース検出アルゴリズムであるouterfaceを提案する。
論文 参考訳(メタデータ) (2020-12-07T18:59:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。