論文の概要: Sarcasm Detection: A Comparative Study
- arxiv url: http://arxiv.org/abs/2107.02276v1
- Date: Mon, 5 Jul 2021 21:20:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 06:04:02.671390
- Title: Sarcasm Detection: A Comparative Study
- Title(参考訳): Sarcasm Detection : 比較検討
- Authors: Hamed Yaghoobian, Hamid R. Arabnia, Khaled Rasheed
- Abstract要約: サルカズム検出は、感情を含むテキスト中の発話を含む皮肉を識別するタスクである。
本稿では,自動サーカズム検出の文献における健全な作業のコンパイルとレビューを行う。
- 参考スコア(独自算出の注目度): 1.7725414095035827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sarcasm detection is the task of identifying irony containing utterances in
sentiment-bearing text. However, the figurative and creative nature of sarcasm
poses a great challenge for affective computing systems performing sentiment
analysis. This article compiles and reviews the salient work in the literature
of automatic sarcasm detection. Thus far, three main paradigm shifts have
occurred in the way researchers have approached this task: 1) semi-supervised
pattern extraction to identify implicit sentiment, 2) use of hashtag-based
supervision, and 3) incorporation of context beyond target text. In this
article, we provide a comprehensive review of the datasets, approaches, trends,
and issues in sarcasm and irony detection.
- Abstract(参考訳): サルカズム検出は、感情を含むテキスト中の発話を含む皮肉を識別するタスクである。
しかし、サルカズムの具体的かつ創造的な性質は感情分析を行う感情コンピューティングシステムにとって大きな課題となる。
本論文は, サーカズム自動検出の文献における有意な成果をまとめ, レビューする。
1) 暗黙的な感情を識別するための半教師付きパターン抽出、2) ハッシュタグに基づく監督、3) ターゲットテキストを超えたコンテキストの組込み、の3つである。
本稿では,皮肉や皮肉の検出におけるデータセット,アプローチ,トレンド,課題の包括的なレビューを行う。
関連論文リスト
- Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue [67.09698638709065]
本稿では,SEntiment-enhanceD Graph を用いたマルチモーダルサルカズム記述フレームワーク EDGE を提案する。
特に,まずレキシコン誘導型発話感情推論モジュールを提案し,そこでは発話感情改善戦略を考案する。
次に,マルチモーダル感情分析モデル JCA を拡張し,映像音声クリップ毎に共同感情ラベルを導出することにより,JCA-SI (Joint Cross Attention-based Sentiment Inference) というモジュールを開発する。
論文 参考訳(メタデータ) (2024-02-06T03:14:46Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - Researchers eye-view of sarcasm detection in social media textual
content [0.0]
ソーシャルメディアにおけるあらゆる形態のコミュニケーションにおける皮肉文の使用は、ターゲットユーザに対する生理的効果をもたらす。
本稿では,様々なサルカズム検出手法について論じ,いくつかのアプローチ,および最適な特徴を持つ関連するデータセットを結論づける。
論文 参考訳(メタデータ) (2023-04-17T19:45:10Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
本研究では,感情と感情の特徴を取り入れたモデルを提案する。
我々のアプローチは、ソーシャルネットワークプラットフォームとオンラインメディアの4つのデータセットに対して、最先端の結果を得た。
論文 参考訳(メタデータ) (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
本稿では,CMSG(Cross-modal sarcasm Generation)の新たな問題,すなわち,与えられた画像に対してサーカシックな記述を生成することについて検討する。
CMSGは、異なるモード間の相関だけでなく、サルカズムの特性をモデルが満たさなければならないため、困難である。
クロスモデルサルカズム生成のための抽出・生成・生成に基づくモジュール法(EGRM)を提案する。
論文 参考訳(メタデータ) (2022-11-20T14:38:24Z) - Computational Sarcasm Analysis on Social Media: A Systematic Review [0.23488056916440855]
サルカズムは、人を侮辱したり、いらいらさせたり、楽しませたりするために、本当に表現したいことの反対を言ったり、書いたりするものとして定義することができる。
テキストデータにおけるサルカズムの曖昧な性質から,その検出は困難であり,感情分析研究コミュニティに大きな関心を寄せている。
論文 参考訳(メタデータ) (2022-09-13T17:20:19Z) - Bi-ISCA: Bidirectional Inter-Sentence Contextual Attention Mechanism for
Detecting Sarcasm in User Generated Noisy Short Text [8.36639545285691]
本稿では,双方向コンテキストアテンション機構(Bi-ISCA)を用いた最先端ディープラーニングアーキテクチャを提案する。
Bi-ISCAは、会話コンテキストのみを使用して、ユーザ生成した短いテキストの皮肉を検出するための文間依存関係をキャプチャする。
提案した深層学習モデルは,暗黙的,暗黙的,文脈的に不連続な単語や句を抽出し,サルカズムを誘発する能力を示す。
論文 参考訳(メタデータ) (2020-11-23T15:24:27Z) - Sarcasm Detection using Context Separators in Online Discourse [3.655021726150369]
サルカズム(Sarcasm)は、意味が暗黙的に伝えられる複雑な形態の言語である。
本研究では,RoBERTa_largeを用いて2つのデータセットの皮肉を検出する。
また,文脈単語埋め込みモデルの性能向上における文脈の重要性を主張する。
論文 参考訳(メタデータ) (2020-06-01T10:52:35Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
非皮肉な入力文に基づくサルカズム生成のための教師なしアプローチを提案する。
本手法では,サルカズムの2つの主要な特徴をインスタンス化するために,検索・編集の枠組みを用いる。
論文 参考訳(メタデータ) (2020-04-28T02:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。