An Evaluation of Machine Learning and Deep Learning Models for Drought
Prediction using Weather Data
- URL: http://arxiv.org/abs/2107.02517v1
- Date: Tue, 6 Jul 2021 10:19:43 GMT
- Title: An Evaluation of Machine Learning and Deep Learning Models for Drought
Prediction using Weather Data
- Authors: Weiwei Jiang, Jiayun Luo
- Abstract summary: Drought is a serious natural disaster that has a long duration and a wide range of influence.
To decrease the drought-caused losses, drought prediction is the basis of making the corresponding drought prevention and disaster reduction measures.
It remains unknown whether drought can be precisely predicted or not with machine learning models using weather data.
- Score: 1.1977931648859175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drought is a serious natural disaster that has a long duration and a wide
range of influence. To decrease the drought-caused losses, drought prediction
is the basis of making the corresponding drought prevention and disaster
reduction measures. While this problem has been studied in the literature, it
remains unknown whether drought can be precisely predicted or not with machine
learning models using weather data. To answer this question, a real-world
public dataset is leveraged in this study and different drought levels are
predicted using the last 90 days of 18 meteorological indicators as the
predictors. In a comprehensive approach, 16 machine learning models and 16 deep
learning models are evaluated and compared. The results show no single model
can achieve the best performance for all evaluation metrics simultaneously,
which indicates the drought prediction problem is still challenging. As
benchmarks for further studies, the code and results are publicly available in
a Github repository.
Related papers
- HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting [12.561873438789242]
This study introduces a comprehensive dataset that incorporates high-resolution extreme weather cases.
We evaluate the current state-of-the-art deep learning models and Numerical Weather Prediction (NWP) systems on HR-Extreme.
arXiv Detail & Related papers (2024-09-27T16:20:51Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Experimental study of time series forecasting methods for groundwater
level prediction [0.0]
We created a dataset of 1026 groundwater level time series.
Each time series is made of daily measurements of groundwater levels and two variables, rainfall and evapotranspiration.
We compared different predictors including local and global time series forecasting methods.
Our result analysis shows that the best predictions are obtained by training a global method on past groundwater levels and rainfall data.
arXiv Detail & Related papers (2022-09-28T08:58:55Z) - Flood Prediction Using Machine Learning Models [0.0]
This paper aims to reduce the extreme risks of this natural disaster by providing a prediction for floods using different machine learning models.
With the outcome, a comparative analysis will be conducted to understand which model delivers a better accuracy.
arXiv Detail & Related papers (2022-08-02T03:59:43Z) - On the Generalization of Agricultural Drought Classification from
Climate Data [0.1908788674366693]
Droughts have a slow onset and depend on various external factors, making drought detection in climate data difficult.
We build upon soil moisture index (SMI) obtained from a hydrological model.
We compare different models with and without sequential inductive bias in classifying droughts based on SMI.
arXiv Detail & Related papers (2021-11-30T14:49:46Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.