論文の概要: HybrUR: A Hybrid Physical-Neural Solution for Unsupervised Underwater
Image Restoration
- arxiv url: http://arxiv.org/abs/2107.02660v1
- Date: Tue, 6 Jul 2021 15:00:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 13:38:08.794135
- Title: HybrUR: A Hybrid Physical-Neural Solution for Unsupervised Underwater
Image Restoration
- Title(参考訳): hybrur:非教師付き水中画像復元のためのハイブリッド物理ニューラルソリューション
- Authors: Shuaizheng Yan, Xingyu Chen, Zhengxing Wu, Jian Wang, Yue Lu, Min Tan,
and Junzhi Yu
- Abstract要約: そこで本稿では,無人水中画像から水中視力回復を学習する,データ駆動型・物理駆動型非教師アーキテクチャを提案する。
Jaffe-McGlamery分解理論を用いて生成モデルを設計し、ニューラルネットワークを用いて水中劣化の過程を記述する。
提案手法は,非拘束水中画像の高品質な復元を,監督なしに行うことができることを示す。
- 参考スコア(独自算出の注目度): 18.690940762032568
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Robust vision restoration for an underwater image remains a challenging
problem. For the lack of aligned underwater-terrestrial image pairs, the
unsupervised method is more suited to this task. However, the pure data-driven
unsupervised method usually has difficulty in achieving realistic color
correction for lack of optical constraint. In this paper, we propose a data-
and physics-driven unsupervised architecture that learns underwater vision
restoration from unpaired underwater-terrestrial images. For sufficient domain
transformation and detail preservation, the underwater degeneration needs to be
explicitly constructed based on the optically unambiguous physics law. Thus, we
employ the Jaffe-McGlamery degradation theory to design the generation models,
and use neural networks to describe the process of underwater degradation.
Furthermore, to overcome the problem of invalid gradient when optimizing the
hybrid physical-neural model, we fully investigate the intrinsic correlation
between the scene depth and the degradation factors for the backscattering
estimation, to improve the restoration performance through physical
constraints. Our experimental results show that the proposed method is able to
perform high-quality restoration for unconstrained underwater images without
any supervision. On multiple benchmarks, we outperform several state-of-the-art
supervised and unsupervised approaches. We also demonstrate that our methods
yield encouraging results on real-world applications.
- Abstract(参考訳): 水中画像のロバストな視覚復元は依然として難しい課題である。
水中-地上画像ペアの整列が欠如しているため、教師なしの手法はこの課題により適している。
しかし、純粋なデータ駆動非教師なし法は通常、光学的制約の欠如に対して現実的な色補正を達成するのが困難である。
本稿では,不対流な水中画像から水中視力回復を学習するデータおよび物理駆動型教師なしアーキテクチャを提案する。
十分な領域変換と詳細保存のためには、水中の変性は光学的に曖昧な物理法則に基づいて明示的に構築する必要がある。
そこで,jaffe-mcglamery分解理論を用いて生成モデルの設計を行い,ニューラルネットワークを用いて水中の劣化過程を記述する。
さらに, ハイブリッド物理ニューラルモデル最適化時の不適切な勾配問題を克服するために, シーン深度と後方散乱推定の劣化要因との固有相関を徹底的に検討し, 物理的制約による復元性能の向上を図る。
提案手法は,非拘束水中画像の高品質な復元を,監督なしに行うことができることを示す。
複数のベンチマークでは、最先端の教師付きアプローチや教師なしアプローチよりも優れています。
また,本手法が実世界の応用に有効であることを示す。
関連論文リスト
- Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
この研究は、提案されたアプローチの有効性をさらに説明するために、現実世界の水中データセットに関する広範な実験を行っている。
海洋探査、水中ロボティクス、自律水中車両といったリアルタイムの水中アプリケーションでは、ディープラーニングと従来の画像処理技術を組み合わせることで、計算効率の良いフレームワークと優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-18T08:40:26Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
この研究は、水中ドッキングの検出と分類を行うために異なるディープラーニングアーキテクチャと比較する。
GAN(Generative Adversarial Network)は画像から画像への変換に用いられ、ガゼボのシミュレーション画像を水中画像に変換する。
その結果,水中の潮流によらず,高濁度シナリオでは20%の改善が見られた。
論文 参考訳(メタデータ) (2023-11-02T18:10:20Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - MetaUE: Model-based Meta-learning for Underwater Image Enhancement [25.174894007563374]
本論文では,様々な水中シナリオ下でクリーンな画像を復元するためのモデルに基づくディープラーニング手法を提案する。
メタラーニング戦略は、合成水中データセット上で事前訓練されたモデルを得るために用いられる。
その後、モデルが実際の水中データセットに微調整され、MetaUEと呼ばれる信頼性の高い水中画像拡張モデルが得られる。
論文 参考訳(メタデータ) (2023-03-12T02:38:50Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
オーバーウォーターシーンで画像をデフォグするための先行マップガイドサイクロン (PG-CycleGAN) を提案する。
提案手法は,最先端の教師付き,半教師付き,非教師付きデグジングアプローチより優れている。
論文 参考訳(メタデータ) (2022-12-23T03:00:28Z) - WaterNeRF: Neural Radiance Fields for Underwater Scenes [6.161668246821327]
我々は、物理インフォームド深度推定と色補正を可能にするために、ニューラルレイディアンス場(NeRF)の最先端技術を進めた。
提案手法であるWaterNeRFは,水中画像形成のための物理モデルを用いてパラメータを推定する。
劣化した画像と修正された水中画像と、シーンの深い深さの新たなビューを作成できる。
論文 参考訳(メタデータ) (2022-09-27T00:53:26Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
本稿では,CycleGANに基づくディープネットワークの監視手法について述べる。
我々は,より効果的なトレーニングにつながるCycleGANのトレーニングに新たな損失を導入し,高品質な再構築を実現した。
提案手法は, 脱落, 脱落, 脱落といった様々な修復作業に効果的に適用できることを実証する。
論文 参考訳(メタデータ) (2022-04-23T01:30:47Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
本稿では,教師なし画像から画像への翻訳フレームワークに基づく水中画像復元手法を提案する。
提案手法は, 生画像と復元画像の相互情報を最大化するために, コントラスト学習と生成敵ネットワークを利用した。
論文 参考訳(メタデータ) (2021-06-20T16:06:26Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
物理モデルに基づくフィードバック制御と,水中画像の高機能化のための領域適応機構を用いた,新しい頑健な対角学習フレームワークを提案する。
水中画像形成モデルを用いてRGB-Dデータから水中訓練データセットをシミュレーションする新しい手法を提案する。
合成および実水中画像の最終的な改良結果は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2020-02-20T07:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。