Dynamics of Fluctuations in Quantum Simple Exclusion Processes
- URL: http://arxiv.org/abs/2107.02662v3
- Date: Tue, 21 Dec 2021 08:22:06 GMT
- Title: Dynamics of Fluctuations in Quantum Simple Exclusion Processes
- Authors: Denis Bernard, Fabian H.L. Essler, Ludwig Hruza, Marko Medenjak
- Abstract summary: We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions.
We show that fluctuations of the fermionic degrees of freedom obey evolution equations of Lindblad type, and derive the corresponding Lindbladians.
We carry out a detailed analysis of the steady states and slow modes that govern the late time behaviour and show that the dynamics of fluctuations of observables is described in terms of closed sets of coupled linear differential-difference equations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the dynamics of fluctuations in the quantum asymmetric simple
exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP
describes a chain of spinless fermions with random hoppings that are induced by
a Markovian environment. We show that fluctuations of the fermionic degrees of
freedom obey evolution equations of Lindblad type, and derive the corresponding
Lindbladians. We identify the underlying algebraic structure by mapping them to
non-Hermitian spin chains and demonstrate that the operator space fragments
into exponentially many (in system size) sectors that are invariant under time
evolution. At the level of quadratic fluctuations we consider the Lindbladian
on the sectors that determine the late time dynamics for the particular case of
the quantum symmetric simple exclusion process (Q-SSEP). We show that the
corresponding blocks in some cases correspond to known Yang-Baxter integrable
models and investigate the level-spacing statistics in others. We carry out a
detailed analysis of the steady states and slow modes that govern the late time
behaviour and show that the dynamics of fluctuations of observables is
described in terms of closed sets of coupled linear differential-difference
equations. The behaviour of the solutions to these equations is essentially
diffusive but with relevant deviations, that at sufficiently late times and
large distances can be described in terms of a continuum scaling limit which we
construct. We numerically check the validity of this scaling limit over a
significant range of time and space scales. These results are then applied to
the study of operator spreading at large scales, focusing on out-of-time
ordered correlators and operator entanglement.
Related papers
- Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy under quantum jumps that induce local particle losses in a model of free fermions hopping.
We show that by tuning the system parameters, a measurement-induced entanglement transition occurs where the entanglement entropy scaling changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Anomalous ballistic scaling in the tensionless or inviscid
Kardar-Parisi-Zhang equation [0.0]
We show that the zero surface tension or zero viscosity case eludes analytical solutions.
Using numerical simulations, we elucidate a well-defined universality class for this case.
The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions.
arXiv Detail & Related papers (2022-05-18T09:29:09Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Lindbladian dissipation of strongly-correlated quantum matter [0.9290757451344674]
The Sachdev-Ye-Kitaev Lindbladian is a paradigmatic solvable model of dissipative many-body quantum chaos.
Analytical progress is possible by developing a mean-field theory for the Liouvillian time evolution on the Keldysh contour.
arXiv Detail & Related papers (2021-12-22T18:17:52Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.