論文の概要: FedFog: Network-Aware Optimization of Federated Learning over Wireless
Fog-Cloud Systems
- arxiv url: http://arxiv.org/abs/2107.02755v1
- Date: Sun, 4 Jul 2021 08:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 10:44:39.555257
- Title: FedFog: Network-Aware Optimization of Federated Learning over Wireless
Fog-Cloud Systems
- Title(参考訳): FedFog: 無線フォグクラウドシステムによるフェデレーション学習のネットワーク対応最適化
- Authors: Van-Dinh Nguyen, Symeon Chatzinotas, Bjorn Ottersten, and Trung Q.
Duong
- Abstract要約: フェデレートラーニング(FL)は、訓練されたローカルパラメータを定期的に集約することで、複数のエッジユーザにわたって大規模な分散機械学習タスクを実行することができる。
まず,フォグサーバにおける勾配パラメータの局所的な集約と,クラウドでのグローバルトレーニング更新を行うための効率的なFLアルゴリズム(FedFog)を提案する。
- 参考スコア(独自算出の注目度): 40.421253127588244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is capable of performing large distributed machine
learning tasks across multiple edge users by periodically aggregating trained
local parameters. To address key challenges of enabling FL over a wireless
fog-cloud system (e.g., non-i.i.d. data, users' heterogeneity), we first
propose an efficient FL algorithm (called FedFog) to perform the local
aggregation of gradient parameters at fog servers and global training update at
the cloud. Next, we employ FedFog in wireless fog-cloud systems by
investigating a novel network-aware FL optimization problem that strikes the
balance between the global loss and completion time. An iterative algorithm is
then developed to obtain a precise measurement of the system performance, which
helps design an efficient stopping criteria to output an appropriate number of
global rounds. To mitigate the straggler effect, we propose a flexible user
aggregation strategy that trains fast users first to obtain a certain level of
accuracy before allowing slow users to join the global training updates.
Extensive numerical results using several real-world FL tasks are provided to
verify the theoretical convergence of FedFog. We also show that the proposed
co-design of FL and communication is essential to substantially improve
resource utilization while achieving comparable accuracy of the learning model.
- Abstract(参考訳): フェデレーション学習(fl)は、訓練されたローカルパラメータを定期的に集約することで、複数のエッジユーザにわたって大規模な分散機械学習タスクを実行することができる。
無線フォグクラウドシステム(例えば、非i.d.)上でFLを有効にする鍵となる課題に対処する。
我々はまず,フォグサーバにおける勾配パラメータの局所的な集約とクラウドでのグローバルトレーニング更新を行う,効率的なFLアルゴリズム(FedFog)を提案する。
次に,FedFogを無線フォグクラウドシステムに適用し,グローバルロスと完了時間のバランスを崩す新たなネットワーク対応FL最適化問題について検討する。
次に、システム性能の正確な測定を行うために反復アルゴリズムを開発し、適切な数のグローバルラウンドを出力する効率的な停止基準の設計を支援する。
トラグラー効果を緩和するために,まずユーザを高速に訓練し,ある程度の精度を得るとともに,遅いユーザがグローバルなトレーニング更新に参加できるようにする,フレキシブルなユーザアグリゲーション戦略を提案する。
いくつかの実世界のFLタスクを用いて、FedFogの理論的収束を検証する。
また,FLと通信の協調設計は,学習モデルの精度を向上しつつ,資源利用の大幅な向上に不可欠であることを示す。
関連論文リスト
- FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
フェデレートラーニング(FL)がIoT(Internet of Things)で大人気
FLrceは、関係ベースのクライアント選択と早期停止戦略を備えた効率的なFLフレームワークである。
その結果,既存のFLフレームワークと比較してFLrceは計算効率を少なくとも30%,通信効率を43%向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-15T10:13:44Z) - FedNAR: Federated Optimization with Normalized Annealing Regularization [54.42032094044368]
ウェイト崩壊の選択を探索し、ウェイト崩壊値が既存のFLアルゴリズムの収束に有意な影響を及ぼすことを確かめる。
我々は,既存のFLアルゴリズムにシームレスに統合可能なプラグインであるFederated Optimization with Normalized Annealing Regularization (FedNAR)を開発した。
論文 参考訳(メタデータ) (2023-10-04T21:11:40Z) - Wirelessly Powered Federated Learning Networks: Joint Power Transfer,
Data Sensing, Model Training, and Resource Allocation [24.077525032187893]
フェデレートラーニング(FL)は、無線ネットワークで多くの成功を収めている。
FLの実装は、モバイルデバイス(MD)のエネルギー制限と、MDにおけるトレーニングデータの可用性によって妨げられている。
無線送電と持続可能なFLネットワークの統合
論文 参考訳(メタデータ) (2023-08-09T13:38:58Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
フェデレートラーニング(FL)は、プライバシー保護のための有望なアプローチとして登場した。
本稿では,アドホックネットワーク上で遠隔医療システムを改善するアプリケーションにおけるFLの性能について検討する。
ネットワーク性能を評価するための指標として,1) 干渉を最小限に抑えながら伝送を成功させる確率,2) 精度と損失の点で分散FLモデルの性能を示す。
論文 参考訳(メタデータ) (2023-03-29T16:36:42Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient
Federated Learning [11.093360539563657]
フェデレートラーニング(FL)は、機械学習トレーニングにおけるプライバシリークのリスクに対処するソリューションとして登場した。
我々は,モデル収束を保証しつつ,FLのエネルギー効率を最適化するFedGPOを提案する。
我々の実験では、FedGPOはモデル収束時間を2.4倍改善し、ベースライン設定の3.6倍のエネルギー効率を達成する。
論文 参考訳(メタデータ) (2022-11-30T01:22:57Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Federated Dynamic Sparse Training: Computing Less, Communicating Less,
Yet Learning Better [88.28293442298015]
Federated Learning (FL)は、クラウドからリソース制限されたエッジデバイスへの機械学習ワークロードの分散を可能にする。
我々は、FedDST(Federated Dynamic Sparse Training)と呼ばれる新しいFLフレームワークを開発し、実装し、実験的に検証する。
FedDSTは、ターゲットのフルネットワークからスパースサブネットワークを抽出し、訓練する動的プロセスである。
論文 参考訳(メタデータ) (2021-12-18T02:26:38Z) - EdgeML: Towards Network-Accelerated Federated Learning over Wireless
Edge [11.49608766562657]
Federated Learning(FL)は、次世代AIシステムのための分散機械学習技術である。
本稿では,マルチホップフェデレーションネットワークの性能を最適化することにより,無線エッジ上のFL収束を加速することを目的とする。
論文 参考訳(メタデータ) (2021-10-14T14:06:57Z) - Convergence Time Optimization for Federated Learning over Wireless
Networks [160.82696473996566]
無線ユーザが(ローカル収集データを用いて訓練した)ローカルFLモデルを基地局(BS)に送信する無線ネットワークを考える。
中央コントローラとして機能するBSは、受信したローカルFLモデルを使用してグローバルFLモデルを生成し、それを全ユーザにブロードキャストする。
無線ネットワークにおけるリソースブロック(RB)の数が限られているため、ローカルFLモデルパラメータをBSに送信するために選択できるのは一部のユーザのみである。
各ユーザが独自のトレーニングデータサンプルを持っているため、BSは、収束したグローバルFLモデルを生成するために、すべてのローカルユーザFLモデルを含むことを好んでいる。
論文 参考訳(メタデータ) (2020-01-22T01:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。