論文の概要: Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence
- arxiv url: http://arxiv.org/abs/2303.12999v1
- Date: Thu, 23 Mar 2023 02:42:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 16:01:19.960382
- Title: Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence
- Title(参考訳): モバイルエッジネットワークにおける自動フェデレーション学習 -- 高速適応と収束
- Authors: Chaoqun You, Kun Guo, Gang Feng, Peng Yang, Tony Q. S. Quek
- Abstract要約: フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
- 参考スコア(独自算出の注目度): 83.58839320635956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) can be used in mobile edge networks to train machine
learning models in a distributed manner. Recently, FL has been interpreted
within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL
significant advantages in fast adaptation and convergence over heterogeneous
datasets. However, existing research simply combines MAML and FL without
explicitly addressing how much benefit MAML brings to FL and how to maximize
such benefit over mobile edge networks. In this paper, we quantify the benefit
from two aspects: optimizing FL hyperparameters (i.e., sampled data size and
the number of communication rounds) and resource allocation (i.e., transmit
power) in mobile edge networks. Specifically, we formulate the MAML-based FL
design as an overall learning time minimization problem, under the constraints
of model accuracy and energy consumption. Facilitated by the convergence
analysis of MAML-based FL, we decompose the formulated problem and then solve
it using analytical solutions and the coordinate descent method. With the
obtained FL hyperparameters and resource allocation, we design a MAML-based FL
algorithm, called Automated Federated Learning (AutoFL), that is able to
conduct fast adaptation and convergence. Extensive experimental results verify
that AutoFL outperforms other benchmark algorithms regarding the learning time
and convergence performance.
- Abstract(参考訳): フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
近年、FLはModel-Agnostic Meta-Learning (MAML) フレームワークで解釈されている。
しかし、既存の研究は単にMAMLとFLを組み合わせるだけで、MAMLがFLにどの程度の利益をもたらすか、モバイルエッジネットワークに対してそのような利益を最大化する方法を明確に示していない。
本稿では,モバイルエッジネットワークにおけるflハイパーパラメータの最適化(サンプルデータサイズと通信ラウンド数)とリソース割り当て(送信電力)の2つの側面から,その利点を定量化する。
具体的には,モデル精度とエネルギー消費の制約の下で,mamlに基づくfl設計を学習時間最小化問題として定式化する。
そこで,MAMLに基づくFLの収束解析により定式化問題を分解し,解析解と座標降下法を用いて解いた。
得られたFLハイパーパラメータとリソース割り当てを用いて、高速適応と収束を可能にするMAMLベースのFLアルゴリズムであるAutomated Federated Learning(AutoFL)を設計する。
広範な実験結果は、autoflが学習時間と収束性能に関して他のベンチマークアルゴリズムよりも優れていることを検証している。
関連論文リスト
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
フェデレーテッド・ラーニング(FL)は、ワイヤレスエッジデバイスに機械学習を分散するための一般的な方法論として登場した。
本研究では,FLにおけるモデル性能と資源利用のトレードオフを最適化することを検討する。
提案したStoFedDelAvは、FL計算ステップに局所言語モデルコンバインダーを組み込む。
論文 参考訳(メタデータ) (2021-12-27T22:30:15Z) - On-the-fly Resource-Aware Model Aggregation for Federated Learning in
Heterogeneous Edge [15.932747809197517]
エッジコンピューティングは、フレキシブルでセキュアでパフォーマンスの良い特性のおかげで、モバイルとワイヤレスネットワークの世界に革命をもたらした。
本稿では,中央集約サーバを空飛ぶマスタに置き換えるための戦略を詳細に検討する。
本研究は,EdgeAIテストベッドおよび実5Gネットワーク上で実施した測定結果から,空飛ぶマスターFLフレームワークを用いたランタイムの大幅な削減効果を示した。
論文 参考訳(メタデータ) (2021-12-21T19:04:42Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
無線通信ネットワーク上でのフェデレーション学習(FL)における遅延計算の問題について検討した。
最適解を得るために,二項探索アルゴリズムを提案する。
シミュレーションの結果,提案アルゴリズムは従来のFL法と比較して最大27.3%遅延を低減できることがわかった。
論文 参考訳(メタデータ) (2020-07-05T19:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。