論文の概要: Logit-based Uncertainty Measure in Classification
- arxiv url: http://arxiv.org/abs/2107.02845v1
- Date: Tue, 6 Jul 2021 19:07:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 04:55:02.581183
- Title: Logit-based Uncertainty Measure in Classification
- Title(参考訳): 分類におけるロジットに基づく不確実性測定
- Authors: Huiyu Wu and Diego Klabjan
- Abstract要約: 我々は,ロジット不確実性と呼ばれる分類タスクに対して,新しい,信頼性が高く,不可知な不確実性尺度を導入する。
この新たな不確実性対策は,従来の課題に対する不確実性対策よりも優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 18.224344440110862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new, reliable, and agnostic uncertainty measure for
classification tasks called logit uncertainty. It is based on logit outputs of
neural networks. We in particular show that this new uncertainty measure yields
a superior performance compared to existing uncertainty measures on different
tasks, including out of sample detection and finding erroneous predictions. We
analyze theoretical foundations of the measure and explore a relationship with
high density regions. We also demonstrate how to test uncertainty using
intermediate outputs in training of generative adversarial networks. We propose
two potential ways to utilize logit-based uncertainty in real world
applications, and show that the uncertainty measure outperforms.
- Abstract(参考訳): 我々は,ロジット不確実性と呼ばれる分類タスクに対して,新たに信頼性の高い不確実性尺度を導入する。
これはニューラルネットワークのロジット出力に基づいている。
特に, この新たな不確実性尺度は, サンプル検出や誤予測など, 様々なタスクにおける既存の不確実性対策に比べ, 優れた性能を示すことを示す。
測定の理論的基礎を分析し,高密度領域との関係を探究する。
また、生成的対向ネットワークのトレーニングにおいて中間出力を用いて不確実性をテストする方法を示す。
実世界のアプリケーションにおいてロジットに基づく不確実性を利用するための2つの潜在的方法を提案する。
関連論文リスト
- FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness [4.14360329494344]
フェアネスにおける不確実性評価のための公理的ベンチマークであるFairlyUncertainを紹介する。
我々のベンチマークは、予測の不確実性推定は学習パイプライン間で一貫性があり、観測されたランダム性に調整されるべきである、と示唆している。
論文 参考訳(メタデータ) (2024-10-02T20:15:29Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
不確実性推定は、訓練されたディープニューラルネットワークの信頼性を評価することを目的としている。
既存の不確実性推定アプローチは、低次元分布仮定に依存している。
本研究では,不確実性推定のためのデータ適応型高次元仮説テストを用いた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-25T12:22:18Z) - Density Uncertainty Layers for Reliable Uncertainty Estimation [20.867449366086237]
ディープニューラルネットワークの予測不確実性を評価することは、ディープラーニングの安全性関連の応用に不可欠である。
本稿では,モデルが入力の経験的密度に基づいて予測分散を行う必要があるという,信頼性のある予測不確実性のための新しい基準を提案する。
既存の手法と比較すると、密度不確実性層はより信頼性の高い不確実性推定とロバストなアウト・オブ・ディストリビューション検出性能を提供する。
論文 参考訳(メタデータ) (2023-06-21T18:12:58Z) - Uncertainty Propagation in Node Classification [9.03984964980373]
本稿では,ノード分類作業におけるグラフニューラルネットワーク(GNN)の不確実性の測定に焦点をあてる。
ベイジアンモデリングフレームワークにGNNを組み込んだベイジアン不確実性伝播(BUP)法を提案する。
本稿では,GNNが学習過程における予測的不確実性を明確に統合できるようにするノード分類における不確実性指向の損失について述べる。
論文 参考訳(メタデータ) (2023-04-03T12:18:23Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Uncertainty-Aware Reliable Text Classification [21.517852608625127]
ディープニューラルネットワークは、分類タスクの予測精度の成功に大きく貢献している。
ドメインシフトやアウト・オブ・ディストリビューション(out-of-distribution)の例が存在する現実の環境では、過度に信頼された予測を行う傾向があります。
補助外乱と擬似外乱サンプルを併用して, あるクラスの事前知識でモデルを訓練する, 安価なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-15T04:39:55Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。