論文の概要: Quadruped Locomotion on Non-Rigid Terrain using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2107.02955v1
- Date: Wed, 7 Jul 2021 00:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 03:24:22.459393
- Title: Quadruped Locomotion on Non-Rigid Terrain using Reinforcement Learning
- Title(参考訳): 強化学習を用いた非リジッド地形上の四足歩行
- Authors: Taehei Kim, Sung-Hee Lee
- Abstract要約: 非剛性な動的地形上での移動学習のための新しい強化学習フレームワークを提案する。
55cmのトレーニングを受けたロボットは、最大5cmまで沈むことができる地形を歩ける。
様々な地形条件でロボットを訓練することで,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 10.729374293332281
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Legged robots need to be capable of walking on diverse terrain conditions. In
this paper, we present a novel reinforcement learning framework for learning
locomotion on non-rigid dynamic terrains. Specifically, our framework can
generate quadruped locomotion on flat elastic terrain that consists of a matrix
of tiles moving up and down passively when pushed by the robot's feet. A
trained robot with 55cm base length can walk on terrain that can sink up to
5cm. We propose a set of observation and reward terms that enable this
locomotion; in which we found that it is crucial to include the end-effector
history and end-effector velocity terms into observation. We show the
effectiveness of our method by training the robot with various terrain
conditions.
- Abstract(参考訳): 足のついたロボットは多様な地形を歩ける必要がある。
本稿では,非剛性動的地形におけるロコモーション学習のための強化学習フレームワークを提案する。
具体的には、我々のフレームワークは、ロボットの足で押すと受動的に上下するタイルのマトリックスからなる平らな弾性地形上で四足歩行を生成できる。
55cmのトレーニングを受けたロボットは、最大5cmまで沈むことができる地形を歩ける。
我々は,この移動を可能にする一連の観察用語と報酬項を提案し,エンドエフェクタ履歴とエンドエフェクタ速度項を観察に含めることが重要であることを見出した。
様々な地形条件でロボットを訓練することで,本手法の有効性を示す。
関連論文リスト
- Learning Humanoid Locomotion over Challenging Terrain [84.35038297708485]
本研究では,自然と人為的な地形を横断する視覚障害者の移動に対する学習に基づくアプローチを提案する。
本モデルではまず, 時系列モデルを用いた平地軌道のデータセット上で事前学習を行い, 補強学習を用いて不均一な地形を微調整する。
本研究では, 荒面, 変形面, 傾斜面など, 様々な地形にまたがる実際のヒューマノイドロボットを用いて, モデルを評価する。
論文 参考訳(メタデータ) (2024-10-04T17:57:09Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
脚付きロボットのアジリティを定量化するための障害物コースであるBarkourベンチマークを導入する。
犬の機敏性の競争に触発され、様々な障害と時間に基づくスコアリング機構から構成される。
ベンチマークに対処する2つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T02:49:43Z) - Legs as Manipulator: Pushing Quadrupedal Agility Beyond Locomotion [34.33972863987201]
我々は四足歩行ロボットを訓練し、前脚を使って壁を登り、ボタンを押し、現実世界でオブジェクトインタラクションを行う。
これらのスキルはカリキュラムを用いてシミュレーションで訓練され,提案したsim2real 変種を用いて実世界へ移行する。
我々は,本手法をシミュレーションと実世界の双方で評価し,短距離および長距離のタスクの実行を成功させたことを示す。
論文 参考訳(メタデータ) (2023-03-20T17:59:58Z) - Legged Locomotion in Challenging Terrains using Egocentric Vision [70.37554680771322]
本稿では,階段,縁石,石段,隙間を横断できる最初のエンドツーエンド移動システムを提案する。
この結果を,1台の前面深度カメラを用いた中型四足歩行ロボットに示す。
論文 参考訳(メタデータ) (2022-11-14T18:59:58Z) - Creating a Dynamic Quadrupedal Robotic Goalkeeper with Reinforcement
Learning [18.873152528330063]
本稿では,4足歩行ロボットが実世界でサッカーのゴールキーピングタスクを実行できる強化学習(RL)フレームワークを提案する。
四足歩行を用いたサッカーのゴールキーピングは難しい問題であり、非常にダイナミックな移動と、正確で高速な非包括的(ボール)操作を組み合わせたものである。
提案するフレームワークをMini Cheetah四脚ロボットにデプロイし,実世界における高速移動球のアジャイルインターセプションにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-10-10T04:54:55Z) - Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills
using a Quadrupedal Robot [76.04391023228081]
本研究では,四足歩行ロボットが実世界において,強化学習を用いて精度の高い射撃技術を実現できるという課題に対処する。
本研究では, 深層強化学習を活用して頑健な動作制御政策を訓練する階層的枠組みを提案する。
提案するフレームワークをA1四足歩行ロボットに展開し、実世界のランダムなターゲットに向けて正確にボールを発射できるようにする。
論文 参考訳(メタデータ) (2022-08-01T22:34:51Z) - Learning Semantics-Aware Locomotion Skills from Human Demonstration [35.996425893483796]
四足歩行ロボットの知覚からセマンティクスを意識したロコモーションスキルを学習するフレームワークを提案する。
本フレームワークは,認識された地形意味に基づいてロボットの速度と歩行を調整し,失敗することなく6km以上歩けるようにする。
論文 参考訳(メタデータ) (2022-06-27T21:08:03Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - Robust Quadruped Jumping via Deep Reinforcement Learning [10.095966161524043]
本稿では,騒音環境下での四足歩行ロボットのジャンプ距離と高さについて考察する。
本研究では,4重跳躍のための非線形軌道最適化の複雑な解を活用・拡張するディープ強化学習を用いたフレームワークを提案する。
体長2倍の体長をジャンプしながら、高さ最大6cmの足の障害の頑丈さ、あるいはロボットの名目立位の高さの33%を実証した。
論文 参考訳(メタデータ) (2020-11-13T19:04:24Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。