論文の概要: Robust Quadruped Jumping via Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2011.07089v3
- Date: Fri, 11 Aug 2023 08:30:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 18:22:06.670305
- Title: Robust Quadruped Jumping via Deep Reinforcement Learning
- Title(参考訳): 深層強化学習によるロバスト四足ジャンプ
- Authors: Guillaume Bellegarda, Chuong Nguyen, Quan Nguyen
- Abstract要約: 本稿では,騒音環境下での四足歩行ロボットのジャンプ距離と高さについて考察する。
本研究では,4重跳躍のための非線形軌道最適化の複雑な解を活用・拡張するディープ強化学習を用いたフレームワークを提案する。
体長2倍の体長をジャンプしながら、高さ最大6cmの足の障害の頑丈さ、あるいはロボットの名目立位の高さの33%を実証した。
- 参考スコア(独自算出の注目度): 10.095966161524043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider a general task of jumping varying distances and
heights for a quadrupedal robot in noisy environments, such as off of uneven
terrain and with variable robot dynamics parameters. To accurately jump in such
conditions, we propose a framework using deep reinforcement learning that
leverages and augments the complex solution of nonlinear trajectory
optimization for quadrupedal jumping. While the standalone optimization limits
jumping to take-off from flat ground and requires accurate assumptions of robot
dynamics, our proposed approach improves the robustness to allow jumping off of
significantly uneven terrain with variable robot dynamical parameters and
environmental conditions. Compared with walking and running, the realization of
aggressive jumping on hardware necessitates accounting for the motors'
torque-speed relationship as well as the robot's total power limits. By
incorporating these constraints into our learning framework, we successfully
deploy our policy sim-to-real without further tuning, fully exploiting the
available onboard power supply and motors. We demonstrate robustness to
environment noise of foot disturbances of up to 6 cm in height, or 33% of the
robot's nominal standing height, while jumping 2x the body length in distance.
- Abstract(参考訳): 本稿では,不均一な地形や可変ロボットの動特性などの騒音環境において,四足ロボットの移動距離や高さを跳躍する一般的な課題について考察する。
そこで本研究では,四足跳躍のための非線形軌道最適化の複雑な解を活用し,拡張する深層強化学習を用いた枠組みを提案する。
スタンドアロンの最適化は、平地からの離陸を制限し、ロボット力学の正確な仮定を必要とするが、提案手法は、ロボットの動的パラメータや環境条件によって、かなり不均一な地形から飛び降りられるように、ロバスト性を改善する。
歩行や走行と比較して、ハードウェアへの攻撃的なジャンプを実現するには、モーターのトルク-速度関係とロボットのトータルパワー限界が不可欠である。
これらの制約を学習フレームワークに組み込むことで、当社のポリシsim-to-realを更なるチューニングなしにデプロイし、利用可能な電源とモーターを完全に活用しました。
体長2倍の体長をジャンプしながら、高さ6cm以上の足の障害や、ロボットの立位33%の環境騒音に対する頑健さを実証した。
関連論文リスト
- Learning to enhance multi-legged robot on rugged landscapes [7.956679144631909]
多足ロボットは、頑丈な風景をナビゲートするための有望なソリューションを提供する。
近年の研究では、線形制御器が挑戦的な地形上で信頼性の高い移動性を確保することが示されている。
我々は,このロボットプラットフォームに適した MuJoCo ベースのシミュレータを開発し,シミュレーションを用いて強化学習に基づく制御フレームワークを開発する。
論文 参考訳(メタデータ) (2024-09-14T15:53:08Z) - Impedance Matching: Enabling an RL-Based Running Jump in a Quadruped Robot [7.516046071926082]
シミュレーションロボットと現実ロボットのギャップを軽減するための新しい枠組みを提案する。
本フレームワークはパラメータ選択のための構造化ガイドラインとシミュレーションにおける動的ランダム化の範囲を提供する。
結果は、我々の知る限り、実四足歩行ロボットにおいて、RLベースの制御ポリシーによって実証された最も高く、最も長いジャンプの1つです。
論文 参考訳(メタデータ) (2024-04-23T14:52:09Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
脚付きロボットのアジリティを定量化するための障害物コースであるBarkourベンチマークを導入する。
犬の機敏性の競争に触発され、様々な障害と時間に基づくスコアリング機構から構成される。
ベンチマークに対処する2つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T02:49:43Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
この研究は、トルク制御された二足歩行ロボットが実世界で頑丈で多目的なダイナミックジャンプを行えるようにすることで、二足歩行ロボットの機敏さの限界を推し進めることを目的としている。
本稿では,ロボットが様々な場所や方向へジャンプするなど,さまざまなジャンプタスクを達成するための強化学習フレームワークを提案する。
我々は,ロボットの長期入出力(I/O)履歴を符号化し,短期I/O履歴への直接アクセスを可能にする新しいポリシー構造を開発する。
論文 参考訳(メタデータ) (2023-02-19T01:06:09Z) - Creating a Dynamic Quadrupedal Robotic Goalkeeper with Reinforcement
Learning [18.873152528330063]
本稿では,4足歩行ロボットが実世界でサッカーのゴールキーピングタスクを実行できる強化学習(RL)フレームワークを提案する。
四足歩行を用いたサッカーのゴールキーピングは難しい問題であり、非常にダイナミックな移動と、正確で高速な非包括的(ボール)操作を組み合わせたものである。
提案するフレームワークをMini Cheetah四脚ロボットにデプロイし,実世界における高速移動球のアジャイルインターセプションにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-10-10T04:54:55Z) - Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills
using a Quadrupedal Robot [76.04391023228081]
本研究では,四足歩行ロボットが実世界において,強化学習を用いて精度の高い射撃技術を実現できるという課題に対処する。
本研究では, 深層強化学習を活用して頑健な動作制御政策を訓練する階層的枠組みを提案する。
提案するフレームワークをA1四足歩行ロボットに展開し、実世界のランダムなターゲットに向けて正確にボールを発射できるようにする。
論文 参考訳(メタデータ) (2022-08-01T22:34:51Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - Next Steps: Learning a Disentangled Gait Representation for Versatile
Quadruped Locomotion [69.87112582900363]
現在のプランナーは、ロボットが動いている間、キー歩行パラメータを連続的に変更することはできない。
本研究では、特定の歩行を構成する重要な姿勢位相を捉える潜在空間を学習することにより、この制限に対処する。
本研究では, 歩幅, 歩幅, 立位など, 歩行パラメータに直接対応した駆動信号マップの具体的特性を示す。
論文 参考訳(メタデータ) (2021-12-09T10:02:02Z) - Autonomous Navigation of Underactuated Bipedal Robots in
Height-Constrained Environments [20.246040671823554]
本稿では,二足歩行ロボットのためのエンドツーエンドの自律ナビゲーションフレームワークを提案する。
平面歩行と垂直歩行高さの結合力学を捉えるために,垂直移動式Spring-Loaded Inverted Pendulum (vSLIP)モデルを導入した。
可変歩行高さ制御装置を利用して、二足歩行ロボットは、計画された軌跡に従いながら、安定した周期歩行歩行を維持できる。
論文 参考訳(メタデータ) (2021-09-13T05:36:14Z) - Autonomous Navigation for Quadrupedal Robots with Optimized Jumping
through Constrained Obstacles [3.8651239621657654]
本稿では,四足歩行ロボットのためのエンドツーエンドナビゲーションフレームワークを提案する。
障害物を回避しつつ動的跳躍操作を可能とし、動的に実現可能な軌道をオフラインに最適化する。
このフレームワークは、四足歩行ロボットMini Cheetahに実験的にデプロイされ、検証されている。
論文 参考訳(メタデータ) (2021-07-01T23:40:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。