Structured Denoising Diffusion Models in Discrete State-Spaces
- URL: http://arxiv.org/abs/2107.03006v1
- Date: Wed, 7 Jul 2021 04:11:00 GMT
- Title: Structured Denoising Diffusion Models in Discrete State-Spaces
- Authors: Jacob Austin, Daniel Johnson, Jonathan Ho, Danny Tarlow and Rianne van
den Berg
- Abstract summary: We introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs) for discrete data.
The choice of transition matrix is an important design decision that leads to improved results in image and text domains.
For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B.
- Score: 15.488176444698404
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Denoising diffusion probabilistic models (DDPMs) (Ho et al. 2020) have shown
impressive results on image and waveform generation in continuous state spaces.
Here, we introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs),
diffusion-like generative models for discrete data that generalize the
multinomial diffusion model of Hoogeboom et al. 2021, by going beyond
corruption processes with uniform transition probabilities. This includes
corruption with transition matrices that mimic Gaussian kernels in continuous
space, matrices based on nearest neighbors in embedding space, and matrices
that introduce absorbing states. The third allows us to draw a connection
between diffusion models and autoregressive and mask-based generative models.
We show that the choice of transition matrix is an important design decision
that leads to improved results in image and text domains. We also introduce a
new loss function that combines the variational lower bound with an auxiliary
cross entropy loss. For text, this model class achieves strong results on
character-level text generation while scaling to large vocabularies on LM1B. On
the image dataset CIFAR-10, our models approach the sample quality and exceed
the log-likelihood of the continuous-space DDPM model.
Related papers
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Mirror Diffusion Models for Constrained and Watermarked Generation [41.27274841596343]
Mirror Diffusion Models (MDM) is a new class of diffusion models that generate data on convex constrained sets without losing tractability.
For safety and privacy purposes, we also explore constrained sets as a new mechanism to embed invisible but quantitative information in generated data.
Our work brings new algorithmic opportunities for learning tractable diffusion on complex domains.
arXiv Detail & Related papers (2023-10-02T14:26:31Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion
Probabilistic Models [58.357180353368896]
We propose a conditional paradigm that benefits from the denoising diffusion probabilistic model (DDPM) to tackle the problem of realistic and diverse action-conditioned 3D skeleton-based motion generation.
We are a pioneering attempt that uses DDPM to synthesize a variable number of motion sequences conditioned on a categorical action.
arXiv Detail & Related papers (2023-01-10T13:15:42Z) - Subspace Diffusion Generative Models [4.310834990284412]
Score-based models generate samples by mapping noise to data (and vice versa) via a high-dimensional diffusion process.
We restrict the diffusion via projections onto subspaces as the data distribution evolves toward noise.
Our framework is fully compatible with continuous-time diffusion and retains its flexible capabilities.
arXiv Detail & Related papers (2022-05-03T13:43:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.