Subspace Diffusion Generative Models
- URL: http://arxiv.org/abs/2205.01490v1
- Date: Tue, 3 May 2022 13:43:47 GMT
- Title: Subspace Diffusion Generative Models
- Authors: Bowen Jing, Gabriele Corso, Renato Berlinghieri, Tommi Jaakkola
- Abstract summary: Score-based models generate samples by mapping noise to data (and vice versa) via a high-dimensional diffusion process.
We restrict the diffusion via projections onto subspaces as the data distribution evolves toward noise.
Our framework is fully compatible with continuous-time diffusion and retains its flexible capabilities.
- Score: 4.310834990284412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score-based models generate samples by mapping noise to data (and vice versa)
via a high-dimensional diffusion process. We question whether it is necessary
to run this entire process at high dimensionality and incur all the
inconveniences thereof. Instead, we restrict the diffusion via projections onto
subspaces as the data distribution evolves toward noise. When applied to
state-of-the-art models, our framework simultaneously improves sample quality
-- reaching an FID of 2.17 on unconditional CIFAR-10 -- and reduces the
computational cost of inference for the same number of denoising steps. Our
framework is fully compatible with continuous-time diffusion and retains its
flexible capabilities, including exact log-likelihoods and controllable
generation. Code is available at
https://github.com/bjing2016/subspace-diffusion.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data.
We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data.
arXiv Detail & Related papers (2024-03-20T14:22:12Z) - DiffEnc: Variational Diffusion with a Learned Encoder [14.045374947755922]
We introduce a data- and depth-dependent mean function in the diffusion process, which leads to a modified diffusion loss.
Our proposed framework, DiffEnc, achieves a statistically significant improvement in likelihood on CIFAR-10.
arXiv Detail & Related papers (2023-10-30T17:54:36Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
We introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space.
We employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process.
Our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster.
arXiv Detail & Related papers (2023-10-09T15:29:10Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
arXiv Detail & Related papers (2022-02-19T20:18:49Z) - Structured Denoising Diffusion Models in Discrete State-Spaces [15.488176444698404]
We introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs) for discrete data.
The choice of transition matrix is an important design decision that leads to improved results in image and text domains.
For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B.
arXiv Detail & Related papers (2021-07-07T04:11:00Z) - A Variational Perspective on Diffusion-Based Generative Models and Score
Matching [8.93483643820767]
We derive a variational framework for likelihood estimation for continuous-time generative diffusion.
We show that minimizing the score-matching loss is equivalent to maximizing a lower bound of the likelihood of the plug-in reverse SDE.
arXiv Detail & Related papers (2021-06-05T05:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.