Rethinking Sampling Strategies for Unsupervised Person Re-identification
- URL: http://arxiv.org/abs/2107.03024v4
- Date: Thu, 05 Dec 2024 05:33:52 GMT
- Title: Rethinking Sampling Strategies for Unsupervised Person Re-identification
- Authors: Xumeng Han, Xuehui Yu, Guorong Li, Jian Zhao, Gang Pan, Qixiang Ye, Jianbin Jiao, Zhenjun Han,
- Abstract summary: We analyze the reasons for the performance differences between various sampling strategies under the same framework and loss function.<n>Group sampling is proposed, which gathers samples from the same class into groups.<n>Experiments on Market-1501, DukeMTMC-reID and MSMT17 show that group sampling achieves performance comparable to state-of-the-art methods.
- Score: 59.47536050785886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised person re-identification (re-ID) remains a challenging task. While extensive research has focused on the framework design and loss function, this paper shows that sampling strategy plays an equally important role. We analyze the reasons for the performance differences between various sampling strategies under the same framework and loss function. We suggest that deteriorated over-fitting is an important factor causing poor performance, and enhancing statistical stability can rectify this problem. Inspired by that, a simple yet effective approach is proposed, termed group sampling, which gathers samples from the same class into groups. The model is thereby trained using normalized group samples, which helps alleviate the negative impact of individual samples. Group sampling updates the pipeline of pseudo-label generation by guaranteeing that samples are more efficiently classified into the correct classes. It regulates the representation learning process, enhancing statistical stability for feature representation in a progressive fashion. Extensive experiments on Market-1501, DukeMTMC-reID and MSMT17 show that group sampling achieves performance comparable to state-of-the-art methods and outperforms the current techniques under purely camera-agnostic settings. Code has been available at https://github.com/ucas-vg/GroupSampling.
Related papers
- Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation [3.894771553698554]
Empirical Risk Minimization (ERM) models tend to rely on attributes that have high spurious correlation with the target.
This can degrade the performance on underrepresented (or'minority') groups that lack these attributes.
We propose Environment-based Validation and Loss-based Sampling (EVaLS) to enhance robustness to spurious correlation.
arXiv Detail & Related papers (2024-10-07T08:17:44Z) - Pairwise Similarity Distribution Clustering for Noisy Label Learning [0.0]
Noisy label learning aims to train deep neural networks using a large amount of samples with noisy labels.
We propose a simple yet effective sample selection algorithm to divide the training samples into one clean set and another noisy set.
Experimental results on various benchmark datasets, such as CIFAR-10, CIFAR-100 and Clothing1M, demonstrate significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2024-04-02T11:30:22Z) - PASS: Peer-Agreement based Sample Selection for training with Noisy Labels [16.283722126438125]
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects.
Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples.
We propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem.
arXiv Detail & Related papers (2023-03-20T00:35:33Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Sampling Through the Lens of Sequential Decision Making [9.101505546901999]
We propose a reward-guided sampling strategy called Adaptive Sample with Reward (ASR)
Our approach optimally adjusts the sampling process to achieve optimal performance.
Empirical results in information retrieval and clustering demonstrate ASR's superb performance across different datasets.
arXiv Detail & Related papers (2022-08-17T04:01:29Z) - Hard Negative Sampling Strategies for Contrastive Representation
Learning [4.1531215150301035]
UnReMix is a hard negative sampling strategy that takes into account anchor similarity, model uncertainty and representativeness.
Experimental results on several benchmarks show that UnReMix improves negative sample selection, and subsequently downstream performance when compared to state-of-the-art contrastive learning methods.
arXiv Detail & Related papers (2022-06-02T17:55:15Z) - Implicit Sample Extension for Unsupervised Person Re-Identification [97.46045935897608]
Clustering sometimes mixes different true identities together or splits the same identity into two or more sub clusters.
We propose an Implicit Sample Extension (OurWholeMethod) method to generate what we call support samples around the cluster boundaries.
Experiments demonstrate that the proposed method is effective and achieves state-of-the-art performance for unsupervised person Re-ID.
arXiv Detail & Related papers (2022-04-14T11:41:48Z) - The Group Loss++: A deeper look into group loss for deep metric learning [65.19665861268574]
Group Loss is a loss function based on a differentiable label-propagation method that enforces embedding similarity across all samples of a group.
We show state-of-the-art results on clustering and image retrieval on four datasets, and present competitive results on two person re-identification datasets.
arXiv Detail & Related papers (2022-04-04T14:09:58Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
spurious correlations between input samples and the target labels wrongly direct the neural network predictions.
We propose an algorithm that optimize for the worst-off group assignments from a constraint set.
We show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.
arXiv Detail & Related papers (2022-01-10T22:04:48Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
Mixup scheme suggests mixing a pair of samples to create an augmented training sample.
We present a novel, yet simple Mixup-variant that captures the best of both worlds.
arXiv Detail & Related papers (2021-12-16T11:27:48Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Complementary Pseudo Labels For Unsupervised Domain Adaptation On Person
Re-identification [46.17084786039097]
We propose a joint learning framework to learn better feature embeddings via high precision neighbor pseudo labels and high recall group pseudo labels.
Our method can achieve state-of-the-art performance under the unsupervised domain adaptation re-ID setting.
arXiv Detail & Related papers (2021-01-29T11:06:36Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Optimal Importance Sampling for Federated Learning [57.14673504239551]
Federated learning involves a mixture of centralized and decentralized processing tasks.
The sampling of both agents and data is generally uniform; however, in this work we consider non-uniform sampling.
We derive optimal importance sampling strategies for both agent and data selection and show that non-uniform sampling without replacement improves the performance of the original FedAvg algorithm.
arXiv Detail & Related papers (2020-10-26T14:15:33Z) - Minority Class Oversampling for Tabular Data with Deep Generative Models [4.976007156860967]
We study the ability of deep generative models to provide realistic samples that improve performance on imbalanced classification tasks via oversampling.
Our experiments show that the way the method of sampling does not affect quality, but runtime varies widely.
We also observe that the improvements in terms of performance metric, while shown to be significant, often are minor in absolute terms.
arXiv Detail & Related papers (2020-05-07T21:35:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.