PASS: Peer-Agreement based Sample Selection for training with Noisy Labels
- URL: http://arxiv.org/abs/2303.10802v2
- Date: Tue, 30 Apr 2024 12:24:24 GMT
- Title: PASS: Peer-Agreement based Sample Selection for training with Noisy Labels
- Authors: Arpit Garg, Cuong Nguyen, Rafael Felix, Thanh-Toan Do, Gustavo Carneiro,
- Abstract summary: The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects.
Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples.
We propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem.
- Score: 16.283722126438125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects. This has, therefore, motivated the emergence of learning with noisy-label (LNL) techniques that focus on separating noisy- and clean-label samples to apply different learning strategies to each group of samples. Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples, yet our empirical observations reveal their limitations, especially for labels with instance dependent noise (IDN). An important characteristic of IDN is the difficulty to distinguish the clean-label samples that lie near the decision boundary (i.e., the hard samples) from the noisy-label samples. We, therefore, propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem. Utilising a trio of classifiers, PASS employs consensus-driven peer-based agreement of two models to select the samples to train the remaining model. PASS is easily integrated into existing LNL models, enabling the improvement of the detection accuracy of noisy- and clean-label samples, which increases the classification accuracy across various LNL benchmarks.
Related papers
- Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
We propose a novel approach named textbfSED to deal with label noise in a textbfSelf-adaptivtextbfE and class-balancetextbfD manner.
A mean-teacher model is then employed to correct labels of noisy samples.
We additionally propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples.
arXiv Detail & Related papers (2024-07-03T03:10:24Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Learning with Noisy Labels Using Collaborative Sample Selection and
Contrastive Semi-Supervised Learning [76.00798972439004]
Collaborative Sample Selection (CSS) removes noisy samples from identified clean set.
We introduce a co-training mechanism with a contrastive loss in semi-supervised learning.
arXiv Detail & Related papers (2023-10-24T05:37:20Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation [16.283722126438125]
Label Noise Learning (LNL) incorporates a sample selection stage to differentiate clean and noisy-label samples.
Such curriculum is sub-optimal since it does not consider the actual label noise rate in the training set.
This paper addresses this issue with a new noise-rate estimation method that is easily integrated with most state-of-the-art (SOTA) LNL methods.
arXiv Detail & Related papers (2023-05-31T01:46:14Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
We propose a two-stage clean samples identification method.
First, we employ a class-level feature clustering procedure for the early identification of clean samples.
Second, for the remaining clean samples that are close to the ground truth class boundary, we propose a novel consistency-based classification method.
arXiv Detail & Related papers (2022-07-29T04:54:57Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.