MedGPT: Medical Concept Prediction from Clinical Narratives
- URL: http://arxiv.org/abs/2107.03134v1
- Date: Wed, 7 Jul 2021 10:36:28 GMT
- Title: MedGPT: Medical Concept Prediction from Clinical Narratives
- Authors: Zeljko Kraljevic, Anthony Shek, Daniel Bean, Rebecca Bendayan, James
Teo, Richard Dobson
- Abstract summary: Temporal modelling of a patient's medical history can be used to predict future events.
We present MedGPT, a novel transformer-based pipeline that uses Named Entity Recognition and Linking tools.
We show that our model captures medical knowledge by testing it on an experimental medical multiple choice question answering task.
- Score: 0.23488056916440858
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The data available in Electronic Health Records (EHRs) provides the
opportunity to transform care, and the best way to provide better care for one
patient is through learning from the data available on all other patients.
Temporal modelling of a patient's medical history, which takes into account the
sequence of past events, can be used to predict future events such as a
diagnosis of a new disorder or complication of a previous or existing disorder.
While most prediction approaches use mostly the structured data in EHRs or a
subset of single-domain predictions and outcomes, we present MedGPT a novel
transformer-based pipeline that uses Named Entity Recognition and Linking tools
(i.e. MedCAT) to structure and organize the free text portion of EHRs and
anticipate a range of future medical events (initially disorders). Since a
large portion of EHR data is in text form, such an approach benefits from a
granular and detailed view of a patient while introducing modest additional
noise. MedGPT effectively deals with the noise and the added granularity, and
achieves a precision of 0.344, 0.552 and 0.640 (vs LSTM 0.329, 0.538 and 0.633)
when predicting the top 1, 3 and 5 candidate future disorders on real world
hospital data from King's College Hospital, London, UK (\textasciitilde600k
patients). We also show that our model captures medical knowledge by testing it
on an experimental medical multiple choice question answering task, and by
examining the attentional focus of the model using gradient-based saliency
methods.
Related papers
- An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
We propose a novel, interpretable deep-learning framework for predicting unplanned hospital readmissions.
We validate our system on the two predictive tasks of hospital readmission within 30 and 180 days, using real-world data.
arXiv Detail & Related papers (2023-10-16T08:48:52Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors.
Our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge.
arXiv Detail & Related papers (2022-02-25T07:50:59Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
We propose an end-to-end robust transformer-based model called SETOR to handle irregular intervals between a patient's visits with admitted timestamps and length of stay in each visit.
Experiments conducted on two real-world healthcare datasets show that, our sequential diagnoses prediction model SETOR achieves better predictive results than previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-07T13:09:55Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.