論文の概要: Time-Aware Ancient Chinese Text Translation and Inference
- arxiv url: http://arxiv.org/abs/2107.03179v1
- Date: Wed, 7 Jul 2021 12:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 20:26:30.175082
- Title: Time-Aware Ancient Chinese Text Translation and Inference
- Title(参考訳): タイムアウェアな古代中国文訳と推論
- Authors: Ernie Chang, Yow-Ting Shiue, Hui-Syuan Yeh, Vera Demberg
- Abstract要約: 我々は、古代漢文の翻訳をめぐる課題に対処することを目指している。
時代の違いによる言語的なギャップは、質の悪い翻訳をもたらす。
ほとんどの翻訳は、しばしばテキストを理解するのに非常に重要な文脈情報を欠いている。
- 参考スコア(独自算出の注目度): 6.787414471399024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we aim to address the challenges surrounding the translation
of ancient Chinese text: (1) The linguistic gap due to the difference in eras
results in translations that are poor in quality, and (2) most translations are
missing the contextual information that is often very crucial to understanding
the text. To this end, we improve upon past translation techniques by proposing
the following: We reframe the task as a multi-label prediction task where the
model predicts both the translation and its particular era. We observe that
this helps to bridge the linguistic gap as chronological context is also used
as auxiliary information. % As a natural step of generalization, we pivot on
the modern Chinese translations to generate multilingual outputs. %We show
experimentally the efficacy of our framework in producing quality translation
outputs and also validate our framework on a collected task-specific parallel
corpus. We validate our framework on a parallel corpus annotated with
chronology information and show experimentally its efficacy in producing
quality translation outputs. We release both the code and the data
https://github.com/orina1123/time-aware-ancient-text-translation for future
research.
- Abstract(参考訳): 本稿では,古代漢文の翻訳に関する課題である,(1)時代差による言語的差異は,品質の悪い翻訳につながり,(2)ほとんどの翻訳では,テキストを理解する上で非常に重要な文脈情報が欠落している,という問題に対処することを目的とする。
この目的のために,過去の翻訳手法を改良し,次のように提案する。 モデルが翻訳と特定の時代の両方を予測するマルチラベル予測タスクとしてタスクを再構成する。
時間的文脈も補助情報として使用されるので,言語的ギャップを埋めるのに有効である。
% 一般化の自然なステップとして、現代中国語の翻訳を軸に多言語出力を生成する。
%) が, 高品質な翻訳出力を生成するためのフレームワークの有効性を実験的に示し, 収集したタスク固有の並列コーパス上でも検証した。
時系列情報にアノテートされた並列コーパス上での枠組みを検証するとともに,品質翻訳出力の生成に実験的に有効性を示す。
将来の研究のために、コードとデータ https://github.com/orina1123/time-aware-ancient-text-translation をリリースします。
関連論文リスト
- Mitigating Translationese in Low-resource Languages: The Storyboard Approach [9.676710061071809]
本稿では,より流動的で自然な文を引き出すために,ストーリーボードを活用した新しいデータ収集手法を提案する。
提案手法では,視覚刺激のあるネイティブ話者をストーリーボード形式で提示し,その記述を原文に直接露出することなく収集する。
従来のテキスト翻訳手法とストーリーボードによるアプローチを,精度と流布率の観点から総合評価した。
論文 参考訳(メタデータ) (2024-07-14T10:47:03Z) - Challenges in Context-Aware Neural Machine Translation [39.89082986080746]
コンテキスト対応ニューラルマシン翻訳は、会話依存を解決するために、文レベルのコンテキストを超えた情報を活用する。
十分な直感にもかかわらず、ほとんどの文脈対応翻訳モデルは、文レベルシステムよりもわずかに改善されている。
本稿では,パラパラグラフ(パラパラグラフ)翻訳という,文書レベルの翻訳のより現実的な設定を提案する。
論文 参考訳(メタデータ) (2023-05-23T07:08:18Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - Improving End-to-End Text Image Translation From the Auxiliary Text
Translation Task [26.046624228278528]
本稿では,テキスト翻訳を補助タスクとするエンドツーエンドモデルを訓練する,新しいテキスト翻訳拡張テキスト画像翻訳を提案する。
モデルパラメータとマルチタスクのトレーニングを共有することで,大規模テキスト並列コーパスを最大限に活用することができる。
論文 参考訳(メタデータ) (2022-10-08T02:35:45Z) - Towards Debiasing Translation Artifacts [15.991970288297443]
確立されたバイアス除去手法を拡張して,翻訳文の削減のための新しい手法を提案する。
我々は、反復的ヌル空間投影(INLP)アルゴリズムを用いて、デバイアス前後の分類精度を計測することにより、文レベルと単語レベルの両方で翻訳文が削減されることを示す。
我々の知る限りでは、これは潜伏埋め込み空間で表現される翻訳語をデビアスする最初の研究である。
論文 参考訳(メタデータ) (2022-05-16T21:46:51Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslateは、英語と絶滅危惧言語チェロキーとの翻訳のためのオンライン機械翻訳デモシステムである。
統計モデルとニューラルネットワークモデルの両方をサポートし、信頼性をユーザに通知するための品質評価を提供する。
論文 参考訳(メタデータ) (2021-07-30T17:58:54Z) - Improving Speech Translation by Understanding and Learning from the
Auxiliary Text Translation Task [26.703809355057224]
我々は,タスクがマルチタスク学習フレームワークにおけるメインタスクに与える影響を理解するために,詳細な分析を行う。
解析により、マルチタスク学習は、異なるモダリティから同様のデコーダ表現を生成する傾向があることを確認した。
これらの知見に触発されて,翻訳品質を向上させる3つの方法を提案する。
論文 参考訳(メタデータ) (2021-07-12T23:53:40Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
言語カバレッジバイアスは、ニューラルネットワーク翻訳(NMT)において重要である。
実験を慎重に設計することにより、トレーニングデータにおける言語カバレッジバイアスの包括的分析を行う。
本稿では,言語カバレッジバイアス問題を軽減するための,シンプルで効果的な2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T01:55:34Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
機械翻訳は、既存の言語間モデルに顕著な影響を与える微妙なアーティファクトを導入することができることを示す。
自然言語の推論では、前提と仮説を独立に翻訳することで、それらの間の語彙的重複を減らすことができる。
また、XNLIでは、それぞれ4.3点と2.8点の翻訳とゼロショットのアプローチを改善している。
論文 参考訳(メタデータ) (2020-04-09T17:54:30Z) - Sign Language Transformers: Joint End-to-end Sign Language Recognition
and Translation [59.38247587308604]
本稿では,連続手話認識と翻訳を共同で学習するトランスフォーマーアーキテクチャを提案する。
RWTH-PHOENIX-Weather-2014Tデータセットの認識と翻訳性能の評価を行った。
我々の翻訳ネットワークは、動画を音声言語に、光沢を音声言語翻訳モデルに、どちらよりも優れています。
論文 参考訳(メタデータ) (2020-03-30T21:35:09Z) - Learning Coupled Policies for Simultaneous Machine Translation using
Imitation Learning [85.70547744787]
本稿では,プログラマ-解釈ポリシーを併用した同時翻訳モデルを効率よく学習する手法を提案する。
6つの言語対の実験により,翻訳品質の点で,本手法は高いベースラインを達成できた。
論文 参考訳(メタデータ) (2020-02-11T10:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。