Reduced state of the field and classicality of quantum Gaussian
evolution
- URL: http://arxiv.org/abs/2107.03196v3
- Date: Wed, 7 Sep 2022 08:03:29 GMT
- Title: Reduced state of the field and classicality of quantum Gaussian
evolution
- Authors: Tomasz Linowski, {\L}ukasz Rudnicki
- Abstract summary: The goal of this work is to derive the exact conditions for the classicality of quantum Gaussian evolution.
Several examples, ranging from Gaussian thermal operations to entanglement-maximizing dissipative engineering are discussed.
Our results are obtained using the recently introduced mesoscopic theory of the reduced state of the field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The notion of classicality of quantum evolution of light is an object of both
conceptual and practical importance. The main goal of this work is to derive
the exact conditions for the classicality of quantum Gaussian evolution, i.e.
the evolution of Gaussian states of light and their convex combinations, a
model which is of great significance in quantum optics and information. Several
examples, ranging from Gaussian thermal operations to entanglement-maximizing
dissipative engineering, are discussed. Our results are obtained using the
recently introduced mesoscopic theory of the reduced state of the field, which
was originally devised as as a description of macroscopic quantum fields. Here,
to make the framework suitable for our goal, we redevelop it as a tool for
probing classicality, which constitutes our second main contribution.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Open dynamics of entanglement in mesoscopic bosonic systems [0.0]
We propose a mesoscopic description of bosonic systems based on boson number correlations.
This description allows for tracking Markovian open evolution of entanglement of both non-Gaussian and Gaussian states.
We show that the entanglement of the state obtained by beam splitting of a single occupied mode is fully inherited from sub-Poissonian statistics.
arXiv Detail & Related papers (2024-02-03T20:45:31Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Observations in Quantum Cosmology [0.0]
We look at whether a canonical quantization of general relativity can produce testable predictions for cosmology.
In particular, we examine how this approach can be used to model the evolution of primordial perturbations.
We conclude that the subject of quantum geometrodynamics illuminates conceptual issues in quantum gravitation.
arXiv Detail & Related papers (2023-06-26T18:00:01Z) - On the gravitization of quantum mechanics and wave function reduction in
Bohmian quantum mechanics [0.0]
This paper uses Einstein's equivalence principle in the description of the gravity-induced wave function reduction in the framework of Bohmian causal quantum theory.
The critical mass for transition from the quantum world to the classical world, the reduction time of the wave function and the temperature that corresponds to the Unruh temperature will be obtained.
arXiv Detail & Related papers (2022-09-01T14:58:35Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Dissipative evolution of quantum Gaussian states [68.8204255655161]
We derive a new model of dissipative time evolution based on unitary Lindblad operators.
As we demonstrate, the considered evolution proves useful both as a description for random scattering and as a tool in dissipator engineering.
arXiv Detail & Related papers (2021-05-26T16:03:34Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.