論文の概要: Bias-Tolerant Fair Classification
- arxiv url: http://arxiv.org/abs/2107.03207v1
- Date: Wed, 7 Jul 2021 13:31:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 13:53:30.085153
- Title: Bias-Tolerant Fair Classification
- Title(参考訳): Bias-Tolerant Fair 分類
- Authors: Yixuan Zhang, Feng Zhou, Zhidong Li, Yang Wang, Fang Chen
- Abstract要約: ラベルバイアスと選択バイアスは、機械学習の結果の公平性を妨げるデータにおける2つの理由である。
本稿では,ラベルバイアスと選択バイアスの影響を受けるデータを用いて,利益を回復しようとするBias-TolerantFAirRegularizedLoss (B-FARL)を提案する。
B-FARLはバイアスデータを入力として取り、公正だが潜伏的なデータで訓練されたデータを近似したモデルを呼び出す。
- 参考スコア(独自算出の注目度): 20.973916494320246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The label bias and selection bias are acknowledged as two reasons in data
that will hinder the fairness of machine-learning outcomes. The label bias
occurs when the labeling decision is disturbed by sensitive features, while the
selection bias occurs when subjective bias exists during the data sampling.
Even worse, models trained on such data can inherit or even intensify the
discrimination. Most algorithmic fairness approaches perform an empirical risk
minimization with predefined fairness constraints, which tends to trade-off
accuracy for fairness. However, such methods would achieve the desired fairness
level with the sacrifice of the benefits (receive positive outcomes) for
individuals affected by the bias. Therefore, we propose a
Bias-TolerantFAirRegularizedLoss (B-FARL), which tries to regain the benefits
using data affected by label bias and selection bias. B-FARL takes the biased
data as input, calls a model that approximates the one trained with fair but
latent data, and thus prevents discrimination without constraints required. In
addition, we show the effective components by decomposing B-FARL, and we
utilize the meta-learning framework for the B-FARL optimization. The
experimental results on real-world datasets show that our method is empirically
effective in improving fairness towards the direction of true but latent
labels.
- Abstract(参考訳): ラベルバイアスと選択バイアスは、機械学習の結果の公平性を阻害する2つの理由として認識される。
ラベルバイアスは、ラベル決定がセンシティブな特徴に邪魔された場合に発生し、データサンプリング中に主観的バイアスが存在するときに選択バイアスが発生する。
さらに悪いことに、そのようなデータに基づいてトレーニングされたモデルは、差別を継承または強化することができる。
ほとんどのアルゴリズム的公正アプローチは、事前定義された公正性制約を伴う経験的リスク最小化を実行する。
しかし、そのような方法は、偏見に影響された個人に対する利益(肯定的な結果)を犠牲にして、望ましい公平性レベルを達成する。
そこで本研究では,ラベルバイアスと選択バイアスの影響を受けるデータを用いて,利益を回復しようとするバイアス耐性fairregularizedloss(b-farl)を提案する。
B-FARLはバイアスデータを入力として取り、公正だが潜伏的なデータで訓練されたデータを近似したモデルを呼び出す。
さらに,B-FARLを分解して有効成分を示すとともに,B-FARL最適化のためのメタラーニングフレームワークを利用する。
実世界のデータセットを用いた実験結果から,本手法は真のラベルの向きに対する公平性向上に有効であることが示された。
関連論文リスト
- AIM: Attributing, Interpreting, Mitigating Data Unfairness [40.351282126410545]
既存の公正機械学習(FairML)の研究は、モデル予測における差別バイアスの軽減に重点を置いている。
トレーニングデータからバイアスや偏見を反映したサンプルの発見という,新たな研究課題について検討する。
サンプルバイアスの測定と対策のための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:21:10Z) - How Far Can Fairness Constraints Help Recover From Biased Data? [9.430687114814997]
公平な分類に関する一般的な信念は、公正な制約は正確さとトレードオフを引き起こし、バイアスのあるデータが悪化する可能性があるというものである。
この信念とは対照的に、Blum & Stangl は、非常に偏りのあるデータであっても、同じ機会制約による公平な分類は、元のデータ分布上で最適に正確かつ公平な分類を回復できることを示した。
論文 参考訳(メタデータ) (2023-12-16T09:49:31Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
本研究では,データ偏差の変化が公正分類器の精度と公平性に及ぼす影響について検討する。
我々の実験は、既存のフェアネスダッシュボードにデータバイアスリスクの尺度を統合する方法を示している。
論文 参考訳(メタデータ) (2023-02-12T13:04:46Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、バイアスがあるだけでなく、真のデータ分布に最適な精度を持つ分類器を生成する。
公平性に制約されたERMによるこの問題の是正能力について検討する。
また、トレーニングデータの再重み付け、等化オッド、復号化パリティなど、他のリカバリ手法についても検討する。
論文 参考訳(メタデータ) (2019-12-02T22:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。