A Leap among Entanglement and Neural Networks: A Quantum Survey
- URL: http://arxiv.org/abs/2107.03313v1
- Date: Tue, 6 Jul 2021 16:08:07 GMT
- Title: A Leap among Entanglement and Neural Networks: A Quantum Survey
- Authors: Fabio Valerio Massoli, Lucia Vadicamo, Giuseppe Amato, Fabrizio Falchi
- Abstract summary: The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scientific community's interest since the late '80s.
First, we introduce basic concepts related to quantum computations, and then we explain the core functionalities of technologies that implement the Gate Model and Adiabatic Quantum Computing paradigms.
We gather, compare and analyze the current state-of-the-art concerning Quantum Perceptrons and Quantum Neural Networks implementations.
- Score: 9.692209933810183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Quantum Computing witnessed massive improvements both in
terms of resources availability and algorithms development. The ability to
harness quantum phenomena to solve computational problems is a long-standing
dream that has drawn the scientific community's interest since the late '80s.
In such a context, we pose our contribution. First, we introduce basic concepts
related to quantum computations, and then we explain the core functionalities
of technologies that implement the Gate Model and Adiabatic Quantum Computing
paradigms. Finally, we gather, compare and analyze the current state-of-the-art
concerning Quantum Perceptrons and Quantum Neural Networks implementations.
Related papers
- Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing [2.2989970407820484]
distributed quantum computing aims to boost the computational power of current quantum systems.
From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing.
Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
arXiv Detail & Related papers (2024-04-01T17:38:18Z) - Quantum computing through the lens of control: A tutorial introduction [0.7179506962081081]
This paper provides a tutorial introduction to quantum computing from the perspective of control theory.
The tutorial only requires basic knowledge of linear algebra and, in particular, no prior exposure to quantum physics.
arXiv Detail & Related papers (2023-10-19T08:25:50Z) - Quantum computing: principles and applications [3.717431207294639]
We introduce the basic principles of quantum computing and the multilayer architecture for a quantum computer.
Based on a mature experimental platform, the Nuclear Magnetic Resonance (NMR) platform, we introduce the basic steps to experimentally implement quantum computing.
arXiv Detail & Related papers (2023-10-13T20:12:28Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.