Quantum Computing in Transport Science: A Review
- URL: http://arxiv.org/abs/2503.21302v1
- Date: Thu, 27 Mar 2025 09:28:33 GMT
- Title: Quantum Computing in Transport Science: A Review
- Authors: Chence Niu, Elnaz Irannezhad, Casey Myers, Vinayak Dixit,
- Abstract summary: Quantum computing, leveraging the principles of quantum mechanics, has been found to significantly enhance computational capabilities in principle.<n>This paper explores quantum computing's potential to address complex, large-scale problems in transportation systems.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum computing, leveraging the principles of quantum mechanics, has been found to significantly enhance computational capabilities in principle, in some cases beyond classical computing limits. This paper explores quantum computing's potential to address complex, large-scale problems in transportation systems. It focuses on three principal paradigms: Gate-based quantum computing, Quantum annealing, and Quantum machine learning, which, though based on gate-based quantum computing, is treated as distinct due to its unique methods and applications. Each paradigm's foundational concepts, practical applications, and potential impacts on the field are discussed to provide a comprehensive overview of quantum computing strategies and their future implications.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing [2.2989970407820484]
distributed quantum computing aims to boost the computational power of current quantum systems.
From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing.
Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
arXiv Detail & Related papers (2024-04-01T17:38:18Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - An Introduction to Quantum Computing for Statisticians [2.3757641219977392]
Quantum computing has the potential to revolutionise and change the way we live and understand the world.
This review aims to provide an accessible introduction to quantum computing with a focus on applications in statistics and data analysis.
arXiv Detail & Related papers (2021-12-13T12:08:28Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.