AGD-Autoencoder: Attention Gated Deep Convolutional Autoencoder for
Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2107.03323v1
- Date: Wed, 7 Jul 2021 16:01:24 GMT
- Title: AGD-Autoencoder: Attention Gated Deep Convolutional Autoencoder for
Brain Tumor Segmentation
- Authors: Tim Cvetko
- Abstract summary: We propose a novel attention gate (AG model) for brain tumor segmentation.
AGs can be integrated within the deep convolutional neural networks (CNNs)
We show that the edge detector along with an attention gated mechanism provide a sufficient enough method for brain segmentation reaching an IOU of 0.78
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Brain tumor segmentation is a challenging problem in medical image analysis.
The endpoint is to generate the salient masks that accurately identify brain
tumor regions in an fMRI screening. In this paper, we propose a novel attention
gate (AG model) for brain tumor segmentation that utilizes both the edge
detecting unit and the attention gated network to highlight and segment the
salient regions from fMRI images. This feature enables us to eliminate the
necessity of having to explicitly point towards the damaged area(external
tissue localization) and classify(classification) as per classical computer
vision techniques. AGs can easily be integrated within the deep convolutional
neural networks(CNNs). Minimal computional overhead is required while the AGs
increase the sensitivity scores significantly. We show that the edge detector
along with an attention gated mechanism provide a sufficient enough method for
brain segmentation reaching an IOU of 0.78
Related papers
- An Integrated Deep Learning Framework for Effective Brain Tumor Localization, Segmentation, and Classification from Magnetic Resonance Images [0.0]
Tumors in the brain result from abnormal cell growth within the brain tissue, arising from various types of brain cells.
Our research proposes DL frameworks for localizing, segmenting, and classifying the grade of these gliomas from MRI images to solve this critical issue.
Our proposed models demonstrated promising results, with the potential to advance medical AI by enabling early diagnosis and providing more accurate treatment options for patients.
arXiv Detail & Related papers (2024-09-25T18:38:57Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Category Guided Attention Network for Brain Tumor Segmentation in MRI [6.685945448824158]
We propose a novel segmentation network named Category Guided Attention U-Net (CGA U-Net)
In this model, we design a Supervised Attention Module (SAM) based on the attention mechanism, which can capture more accurate and stable long-range dependency in feature maps without introducing much computational cost.
Experimental results on the BraTS 2019 datasets show that the proposed method outperformers the state-of-the-art algorithms in both segmentation performance and computational complexity.
arXiv Detail & Related papers (2022-03-29T09:22:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - FocusNetv2: Imbalanced Large and Small Organ Segmentation with
Adversarial Shape Constraint for Head and Neck CT Images [82.48587399026319]
delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs.
We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs.
In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge.
arXiv Detail & Related papers (2021-04-05T04:45:31Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
arXiv Detail & Related papers (2020-02-26T14:10:40Z) - DVNet: A Memory-Efficient Three-Dimensional CNN for Large-Scale
Neurovascular Reconstruction [1.9199289015460215]
We present a fully-convolutional, deep, and densely-connected encoder-decoder for pixel-wise semantic segmentation.
The proposed network provides superior performance for semantic segmentation problems applied to open-source benchmarks.
arXiv Detail & Related papers (2020-02-04T22:39:58Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z) - Transfer Learning for Brain Tumor Segmentation [0.6408773096179187]
Gliomas are the most common malignant brain tumors that are treated with chemoradiotherapy and surgery.
Recent advances in deep learning have led to convolutional neural network architectures that excel at various visual recognition tasks.
In this work, we construct FCNs with pretrained convolutional encoders. We show that we can stabilize the training process this way and achieve an improvement with respect to dice scores and Hausdorff distances.
arXiv Detail & Related papers (2019-12-28T12:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.