論文の概要: Partial 3D Object Retrieval using Local Binary QUICCI Descriptors and
Dissimilarity Tree Indexing
- arxiv url: http://arxiv.org/abs/2107.03368v1
- Date: Wed, 7 Jul 2021 17:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 14:00:11.345100
- Title: Partial 3D Object Retrieval using Local Binary QUICCI Descriptors and
Dissimilarity Tree Indexing
- Title(参考訳): 局所二元QUICCI記述子と異種木インデックスを用いた部分的3次元オブジェクト検索
- Authors: Bart Iver van Blokland and Theoharis Theoharis
- Abstract要約: Quick Intersection Count Change Image(QUICCI)に基づく高精度かつ効率的な部分的3次元オブジェクト検索のための完全パイプラインの提案
QUICCIクエリ記述子の変更が、部分的検索にどのように理想的であるかを示す。
局所記述子の広い空間の探索を著しく高速化する「異種木」という索引付け構造を提案する。
- 参考スコア(独自算出の注目度): 2.922007656878633
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A complete pipeline is presented for accurate and efficient partial 3D object
retrieval based on Quick Intersection Count Change Image (QUICCI) binary local
descriptors and a novel indexing tree. It is shown how a modification to the
QUICCI query descriptor makes it ideal for partial retrieval. An indexing
structure called Dissimilarity Tree is proposed which can significantly
accelerate searching the large space of local descriptors; this is applicable
to QUICCI and other binary descriptors. The index exploits the distribution of
bits within descriptors for efficient retrieval. The retrieval pipeline is
tested on the artificial part of SHREC'16 dataset with near-ideal retrieval
results.
- Abstract(参考訳): 完全パイプラインは、Quick Intersection Count Change Image (QUICCI)バイナリローカル記述子と新しいインデックスツリーに基づいて、正確で効率的な部分的な3Dオブジェクトの検索を行う。
また,quicciクエリ記述子の変更により,部分検索が理想的になることを示す。
局所記述子の広い空間の探索を著しく高速化する「異種木」という索引構造が提案され、QUICCIや他のバイナリ記述子に適用できる。
このインデックスは、効率的な検索のためにディスクリプタ内のビットの分布を利用する。
検索パイプラインは、ほぼ理想に近い検索結果を持つshrec'16データセットの人工的な部分でテストされる。
関連論文リスト
- Operational Advice for Dense and Sparse Retrievers: HNSW, Flat, or Inverted Indexes? [62.57689536630933]
本稿では,オープンソースのLucene検索ライブラリを用いたBEIRデータセットの実験結果について述べる。
本研究は,高密度かつ疎密なレトリバーの設計空間を理解するための,今日の検索実践者へのガイダンスを提供する。
論文 参考訳(メタデータ) (2024-09-10T12:46:23Z) - FUSELOC: Fusing Global and Local Descriptors to Disambiguate 2D-3D Matching in Visual Localization [57.59857784298536]
直接2D-3Dマッチングアルゴリズムでは、メモリが大幅に削減されるが、より大きくあいまいな検索空間のために精度が低下する。
本研究では,2次元3次元探索フレームワーク内の重み付き平均演算子を用いて局所的およびグローバルな記述子を融合させることにより,この曖昧さに対処する。
ローカルのみのシステムの精度を常に改善し、メモリ要求を半減させながら階層的な手法に近い性能を達成する。
論文 参考訳(メタデータ) (2024-08-21T23:42:16Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) は、新しい半パラメトリック検索フレームワークである。
既存のニューラル検索手法に似た、高い有効性のための埋め込みベースのインデックスと、従来の用語ベースの検索に似た、迅速かつ費用対効果の高いセットアップを可能にするバイナリトークンインデックスの2つのタイプをサポートする。
埋め込みベースインデックスを使用する場合の高密度検索器DPRよりも3%高いトップ1検索精度と、バイナリトークンインデックスを使用する場合のBM25よりも9%高いトップ1検索精度を実現する。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
しばしば見過ごされる設計選択は、コーパスが索引付けされる検索単位である。
本稿では,高密度検索のための新しい検索ユニット,命題を提案する。
実験により、提案のような細粒度単位によるコーパスのインデックス付けは、検索タスクにおける通過レベル単位を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-12-11T18:57:35Z) - A Semantic Indexing Structure for Image Retrieval [9.889773269004241]
セマンティックインデックス構造(SIS)と呼ばれる新しい分類に基づくインデックス構造を提案する。
SISはクラスタリングセンタではなくセマンティックカテゴリを使用して、データベースパーティションを生成する。
SISは最先端のモデルと比較して優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-14T11:12:30Z) - The Case for Learned Spatial Indexes [62.88514422115702]
我々は、空間範囲の問合せに答えるために、最先端の学習した多次元インデックス構造(すなわちFlood)から提案した手法を用いる。
i) パーティション内の機械学習検索は、1次元でフィルタリングを使用する場合の2進探索よりも11.79%速く、39.51%高速であることを示す。
また、2次元でフィルタする最も近い競合相手の1.23倍から1.83倍の速さで機械学習インデックスを精査する。
論文 参考訳(メタデータ) (2020-08-24T12:09:55Z) - An Indexing Scheme and Descriptor for 3D Object Retrieval Based on Local
Shape Querying [1.7188280334580193]
局所形状問合せのためのハミング木と呼ばれるハミング距離に基づくバイナリ記述子インデックス方式を提案する。
Quick Intersection Count Change Image (QUICCI)と呼ばれる新しいバイナリクラッタ耐性ディスクリプタも導入された。
論文 参考訳(メタデータ) (2020-08-07T00:46:58Z) - Progressively Pretrained Dense Corpus Index for Open-Domain Question
Answering [87.32442219333046]
本稿では,段落エンコーダを事前学習するための簡易かつ資源効率の高い手法を提案する。
本手法は,事前学習に7倍の計算資源を使用する既存の高密度検索法より優れている。
論文 参考訳(メタデータ) (2020-04-30T18:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。